Skip to main content

Protein Structural Analysis by Cryogenic Electron Microscopy

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2652))

  • 1624 Accesses

Abstract

Cryogenic electron microscopy (cryo-EM) is constantly developing and growing as a major technique for structure determination of protein complexes. Here, we detail the first steps of any cryo-EM project: specimen preparation and data collection. Step by step, a list of material needed is provided and the sequence of actions to carry out is given. We hope that these protocols will be useful to all people getting started with cryo-EM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Callaway E (2020) “It opens up a whole new universe”: revolutionary microscopy technique sees individual atoms for first time. Nature 582:156–157

    Article  CAS  PubMed  Google Scholar 

  2. Kühlbrandt W (2014) The resolution revolution. Science 343:1443–1444

    Article  PubMed  Google Scholar 

  3. de Oliveira TM, van Beek L, Shilliday F et al (2021) Cryo-EM: the resolution revolution and drug discovery. SLAS Discov 26:17–31

    Article  PubMed  Google Scholar 

  4. Wu M, Lander GC (2020) Present and emerging methodologies in cryo-EM single-particle analysis. Biophys J 119:1281–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glaeser RM, Hagen WJH, Han B-G et al (2021) Defocus-dependent Thon-ring fading. Ultramicroscopy 222:113213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Russo CJ, Henderson R (2018a) Charge accumulation in electron cryomicroscopy. Ultramicroscopy 187:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russo CJ, Henderson R (2018b) Microscopic charge fluctuations cause minimal contrast loss in cryoEM. Ultramicroscopy 187:56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McMullan G, Faruqi AR, Clare D et al (2014) Comparison of optimal performance at 300keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147:156–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17

    Article  CAS  PubMed  Google Scholar 

  10. Ruskin RS, Yu Z, Grigorieff N (2013) Quantitative characterization of electron detectors for transmission electron microscopy. J Struct Biol 184:385–393

    Article  CAS  PubMed  Google Scholar 

  11. Wu S, Armache J-P, Cheng Y (2016) Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy 65:35–41

    Article  PubMed  Google Scholar 

  12. Zheng SQ, Palovcak E, Armache J-P et al (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. elife 4:e06980

    Article  PubMed  PubMed Central  Google Scholar 

  14. Booth C (2012) K2: a super-resolution electron counting direct detection camera for cryo-EM. Microsc Microanal 18:78–79

    Article  Google Scholar 

  15. Sun M, Azumaya CM, Tse E et al (2021) Practical considerations for using K3 cameras in CDS mode for high-resolution and high-throughput single particle cryo-EM. J Struct Biol 213:107745

    Article  PubMed  Google Scholar 

  16. Guo H, Franken E, Deng Y et al (2020) Electron-event representation data enable efficient cryoEM file storage with full preservation of spatial and temporal resolution. IUCrJ 7:860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakane T, Kotecha A, Sente A et al (2020) Single-particle cryo-EM at atomic resolution. Nature 587:152–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonen S (2021) Progress towards cryoEM: negative-stain procedures for biological samples. In: Gonen T, Nannenga BL (eds) CryoEM: methods and protocols. Springer US, New York, NY, pp 115–123

    Chapter  Google Scholar 

  19. Ohi M, Li Y, Cheng Y et al (2004) Negative staining and image classification – powerful tools in modern electron microscopy. Biol Proced Online 6:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubochet J, Adrian M, Chang JJ et al (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228

    Article  CAS  PubMed  Google Scholar 

  21. Dubochet J, Adrian M, Chang J-J et al (1987) Cryoelectron microscopy of vitrified specimens. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 114–131

    Chapter  Google Scholar 

  22. Glaeser RM (2018) Proteins, interfaces, and cryo-EM grids. Curr Opin Colloid Interface Sci 34:1–8

    Article  CAS  PubMed  Google Scholar 

  23. D’Imprima E, Floris D, Joppe M et al (2019) Protein denaturation at the air-water interface and how to prevent it. elife 8:e42747

    Article  PubMed  PubMed Central  Google Scholar 

  24. Noble AJ, Wei H, Dandey VP et al (2018) Reducing effects of particle adsorption to the air-water interface in cryo-EM. Nat Methods 15:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fan H, Wang B, Zhang Y, et al (2021) A novel cryo-electron microscopy support film based on 2D crystal of HFBI protein. bioRxiv. https://doi.org/10.1101/2021.11.09.467987

  26. Liu N, Zhang J, Chen Y et al (2019) Bioactive functionalized monolayer graphene for high-resolution cryo-electron microscopy. J Am Chem Soc 141:4016–4025

    Article  CAS  PubMed  Google Scholar 

  27. Rubinstein JL, Guo H, Ripstein ZA et al (2019) Shake-it-off: a simple ultrasonic cryo-EM specimen-preparation device. Acta Crystallogr D Struct Biol 75:1063–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang Z, Shigematsu H, Shimizu T et al (2021) Improving particle quality in cryo-EM analysis using a PEGylation method. Structure 29:1192–1199.e4

    Article  CAS  PubMed  Google Scholar 

  29. Razinkov I, Dandey V, Wei H et al (2016) A new method for vitrifying samples for cryoEM. J Struct Biol 195:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ravelli RBG, Nijpels FJT, Henderikx RJM et al (2020) Cryo-EM structures from sub-nl volumes using pin-printing and jet vitrification. Nat Commun 11:2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huber ST, Sarajlic E, Huijink R et al (2022) Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. elife 11. https://doi.org/10.7554/eLife.72629

  32. Frank J, Shimkin B, Dowse H (1981) Spider—a modular software system for electron image processing. Ultramicroscopy 6:343–357

    Article  Google Scholar 

  33. Shaikh TR, Gao H, Baxter WT et al (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 3:1941–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Heel M, Harauz G, Orlova EV et al (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24

    Article  PubMed  Google Scholar 

  35. Grant T, Rohou A, Grigorieff N (2018) cisTEM, user-friendly software for single-particle image processing. elife 7:e35383

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157:117–125

    Article  CAS  PubMed  Google Scholar 

  37. Kimanius D, Dong L, Sharov G et al (2021) New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J 478:4169–4185

    Article  CAS  PubMed  Google Scholar 

  38. Marabini R, Masegosa IM, San Martin MC et al (1996) Xmipp: an image processing package for electron microscopy. J Struct Biol 116:237–240

    Article  CAS  PubMed  Google Scholar 

  39. Nakane T, Kimanius D, Lindahl E et al (2018) Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. elife 7:e36861

    Article  PubMed  PubMed Central  Google Scholar 

  40. Punjani A, Rubinstein JL, Fleet DJ et al (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296

    Article  CAS  PubMed  Google Scholar 

  41. Punjani A, Zhang H, Fleet DJ (2020) Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat Methods 17:1214–1221

    Article  CAS  PubMed  Google Scholar 

  42. Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strelak D, Jiménez-Moreno A, Vilas JL et al (2021) Advances in Xmipp for cryo-electron microscopy: from Xmipp to scipion. Molecules 26:6224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang G, Peng L, Baldwin PR et al (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  PubMed  Google Scholar 

  45. Zivanov J, Nakane T, Scheres SHW (2020) Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7:253–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bharadwaj A, Jakobi AJ (2022) Electron scattering properties of biological macromolecules and their use for cryo-EM map sharpening. Faraday Discuss 240:168. https://doi.org/10.1039/d2fd00078d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liebschner D, Afonine PV, Baker ML et al (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75:861–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanchez-Garcia R, Gomez-Blanco J, Cuervo A et al (2021) DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol 4:874

    Article  PubMed  PubMed Central  Google Scholar 

  49. Terwilliger TC, Ludtke SJ, Read RJ, et al (2019) Improvement of cryo-EM maps by density modification. bioRxiv. https://doi.org/10.1101/845032

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Hall or Marta Carroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hall, M., Schexnaydre, E., Holmlund, C., Carroni, M. (2023). Protein Structural Analysis by Cryogenic Electron Microscopy. In: Sousa, Â., Passarinha, L. (eds) Advanced Methods in Structural Biology. Methods in Molecular Biology, vol 2652. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3147-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3147-8_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3146-1

  • Online ISBN: 978-1-0716-3147-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics