Skip to main content

Profiling the Mammalian Lipidome by Quantitative Shotgun Lipidomics

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2625))

  • 1196 Accesses

Abstract

The emerging field of lipidomics presents the systems biology approach to identify and quantify the full lipid repertoire of cells, tissues, and organisms. The importance of the lipidome is demonstrated by a number of biological studies on dysregulation of lipid metabolism in human diseases such as cancer, diabetes, and neurodegenerative diseases. Exploring changes and regulations in the huge networks of lipids and their metabolic pathways requires a lipidomics methodology: advanced mass spectrometry that resolves the complexity of the lipidome. Here, we report a comprehensive protocol of quantitative shotgun lipidomics that enables identification and quantification of hundreds of molecular lipid species, covering a wide range of lipid classes, extracted from cultured mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598

    Article  CAS  Google Scholar 

  2. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777

    Article  CAS  Google Scholar 

  3. Fahy E et al (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50(Suppl):S9–14

    Google Scholar 

  4. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  Google Scholar 

  5. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4(7):594–610

    Article  CAS  Google Scholar 

  6. Brugger B (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 83:79–98

    Article  Google Scholar 

  7. Horn PJ, Chapman KD (2012) Lipidomics in tissues, cells and subcellular compartments. Plant J 70(1):69–80

    Article  CAS  Google Scholar 

  8. Blanksby SJ, Mitchell TW (2010) Advances in mass spectrometry for lipidomics. Annu Rev Anal Chem (Palo Alto, Calif) 3:433–465

    Article  CAS  Google Scholar 

  9. Han X, Gross RW (2003) Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J Lipid Res 44(6):1071–1079

    Article  CAS  Google Scholar 

  10. Ejsing CS et al (2009) Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106(7):2136–2141

    Article  CAS  Google Scholar 

  11. Sampaio JL et al (2011) Membrane lipidome of an epithelial cell line. Proc Natl Acad Sci U S A 108(5):1903–1907

    Article  CAS  Google Scholar 

  12. Bou Khalil M et al (2010) Lipidomics era: accomplishments and challenges. Mass Spectrom Rev 29(6):877–929

    Article  Google Scholar 

  13. Schuhmann K et al (2012) Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J Mass Spectrom 47(1):96–104

    Article  CAS  Google Scholar 

  14. Almeida R et al (2015) Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J Am Soc Mass Spectrom 26(1):133–148

    Article  CAS  Google Scholar 

  15. Almeida R et al (2015) Quantitative spatial analysis of the mouse brain lipidome by pressurized liquid extraction surface analysis. Anal Chem 87(3):1749–1756

    Article  CAS  Google Scholar 

  16. Nielsen IO et al (2020) Comprehensive evaluation of a quantitative shotgun Lipidomics platform for mammalian sample analysis on a high-resolution mass spectrometer. J Am Soc Mass Spectrom 31(4):894–907

    Article  CAS  Google Scholar 

  17. Han X et al (2005) Shotgun lipidomics of phosphoethanolamine-containing lipids in biological samples after one-step in situ derivatization. J Lipid Res 46(7):1548–1560

    Article  CAS  Google Scholar 

  18. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24(3):367–412

    Article  CAS  Google Scholar 

  19. Liebisch G et al (2006) High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim Biophys Acta 1761(1):121–128

    Article  CAS  Google Scholar 

  20. Casanovas A et al (2014) Shotgun lipidomic analysis of chemically sulfated sterols compromises analytical sensitivity: recommendation for large-scale global lipidome analysis. Eur J Lipid Sci Technol 116(12):1618–1620

    Article  CAS  Google Scholar 

  21. Kalvodova L et al (2009) The lipidomes of vesicular stomatitis virus, semliki forest virus, and the host plasma membrane analyzed by quantitative shotgun mass spectrometry. J Virol 83(16):7996–8003

    Article  CAS  Google Scholar 

  22. Herzog R et al (2012) LipidXplorer: a software for consensual cross-platform lipidomics. PLoS One 7(1):e29851

    Article  CAS  Google Scholar 

  23. Bilgin M et al (2011) Quantitative profiling of PE, MMPE, DMPE, and PC lipid species by multiple precursor ion scanning: a tool for monitoring PE metabolism. Biochim Biophys Acta 1811(12):1081–1089

    Article  CAS  Google Scholar 

  24. Ejsing CS et al (2006) Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem 78(17):6202–6214

    Article  CAS  Google Scholar 

  25. Al-Saad KA et al (2003) Structural analysis of phosphatidylcholines by post-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 14(4):373–382

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Bilgin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Foged, M.M., Maeda, K., Bilgin, M. (2023). Profiling the Mammalian Lipidome by Quantitative Shotgun Lipidomics. In: Bhattacharya, S.K. (eds) Lipidomics. Methods in Molecular Biology, vol 2625. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2966-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2966-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2965-9

  • Online ISBN: 978-1-0716-2966-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics