Skip to main content

Data Analysis Pipeline for Detection and Quantification of Pseudouridine (ψ) in RNA by HydraPsiSeq

  • Protocol
  • First Online:
Computational Epigenomics and Epitranscriptomics

Abstract

Pseudouridine, a modified RNA residue formed by the isomerization of its parental U nucleotide, is prevalent in a majority of cellular RNAs; its presence was reported in tRNA, rRNA, and sn/snoRNA as well as in mRNA/lncRNA. Multiple analytical deep sequencing-based approaches have been proposed for pseudouridine detection and quantification, among which the most popular relies on the use of soluble carbodiimide (termed CMCT). Recently, we developed an alternative protocol for pseudouridine mapping and quantification. The principle is based on protection of pseudouridine against random RNA cleavage by hydrazine/aniline treatment (HydraPsiSeq protocol). This “negative” detection mode requires higher sequencing depth and provides a precise quantification of the pseudouridine content. All “wet-lab” technical details of the HydraPsiSeq protocol have been described in recent publications. Here, we describe all bioinformatics analysis steps required for data processing from raw reads to the pseudouridylation profile of known or unknown RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi H, De Zoysa MD, Yu Y-T (2019) Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. Biochim Biophys Acta Gene Regul Mech 1862(3):230–239. https://doi.org/10.1016/j.bbagrm.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  2. McCown PJ, Ruszkowska A, Kunkler CN et al (2020) Naturally occurring modified ribonucleosides. Wiley Interdiscip Rev RNA 11(5):e1595. https://doi.org/10.1002/wrna.1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borchardt EK, Martinez NM, Gilbert WV (2020) Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet 54:309–336. https://doi.org/10.1146/annurev-genet-112618-043830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morais P, Adachi H, Yu Y-T (2021) Spliceosomal snRNA epitranscriptomics. Front Genet 12:652129. https://doi.org/10.3389/fgene.2021.652129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spenkuch F, Motorin Y, Helm M (2014) Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol 11(12):1540–1554. https://doi.org/10.4161/15476286.2014.992278

    Article  PubMed  Google Scholar 

  6. Motorin Y, Marchand V (2021) Analysis of RNA modifications by second- and third-generation deep sequencing: 2020 update. Genes 12(2):278. https://doi.org/10.3390/genes12020278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Westhof E (2019) Pseudouridines or how to draw on weak energy differences. Biochem Biophys Res Commun 520(4):702–704. https://doi.org/10.1016/j.bbrc.2019.10.009

    Article  CAS  PubMed  Google Scholar 

  8. Adachi H, DeZoysa MD, Yu Y-T (2019) Detection and quantification of pseudouridine in RNA. Methods Mol Biol Clifton NJ 1870:219–235. https://doi.org/10.1007/978-1-4939-8808-2_17

    Article  CAS  Google Scholar 

  9. Zhou KI, Clark WC, Pan DW, Eckwahl MJ, Dai Q, Pan T (2018) Pseudouridines have context-dependent mutation and stop rates in high-throughput sequencing. RNA Biol 15(7):892–900. https://doi.org/10.1080/15476286.2018.1462654

    Article  PubMed  PubMed Central  Google Scholar 

  10. Durairaj A, Limbach PA (2008) Mass spectrometry of the fifth nucleoside: a review of the identification of pseudouridine in nucleic acids. Anal Chim Acta 623(2):117–125. https://doi.org/10.1016/j.aca.2008.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Addepalli B, Limbach PA (2011) Mass spectrometry-based quantification of pseudouridine in RNA. J Am Soc Mass Spectrom 22(8):1363–1372. https://doi.org/10.1007/s13361-011-0137-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patteson KG, Rodicio LP, Limbach PA (2001) Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry. Nucleic Acids Res 29(10):E49–E49. https://doi.org/10.1093/nar/29.10.e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Helm M, Schmidt-Dengler MC, Weber M, Motorin Y (2021) General principles for the detection of modified nucleotides in RNA by specific reagents. Adv Biol 5(10):e2100866. https://doi.org/10.1002/adbi.202100866

    Article  Google Scholar 

  14. Chang SE, Ish-Horowicz D (1974) Selective modification of cytidine, uridine, guanosine and pseudouridine residues in Escherichia coli leucine transfer ribonucleic acid. J Mol Biol 84(3):375–388. https://doi.org/10.1016/0022-2836(74)90446-x

    Article  CAS  PubMed  Google Scholar 

  15. Ofengand J, Del Campo M, Kaya Y (2001) Mapping pseudouridines in RNA molecules. Methods (San Diego Calif) 25(3):365–373. https://doi.org/10.1006/meth.2001.1249

    Article  CAS  PubMed  Google Scholar 

  16. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515(7525):143–146. https://doi.org/10.1038/nature13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9(10):e110799. https://doi.org/10.1371/journal.pone.0110799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159(1):148–162. https://doi.org/10.1016/j.cell.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sas-Chen A, Nir R, Schwartz S (2021) mito-Ψ-Seq: a high-throughput method for systematic mapping of Pseudouridine within mitochondrial RNA. Methods Mol Biol Clifton NJ 2192:103–115. https://doi.org/10.1007/978-1-0716-0834-0_9

    Article  CAS  Google Scholar 

  20. Zhang W, Eckwahl MJ, Zhou KI, Pan T (2019) Sensitive and quantitative probing of pseudouridine modification in mRNA and long noncoding RNA. RNA 25(9):1218–1225. https://doi.org/10.1261/rna.072124.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bakin A, Ofengand J (1993) Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32(37):9754–9762

    Article  CAS  PubMed  Google Scholar 

  22. Massenet S, Motorin Y, Lafontaine DL, Hurt EC, Grosjean H, Branlant C (1999) Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol Cell Biol 19(3):2142–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marchand V, Pichot F, Neybecker P et al (2020) HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res 48(19):e110. https://doi.org/10.1093/nar/gkaa769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marchand V, Bourguignon-Igel V, Helm M, Motorin Y (2021) Analysis of pseudouridines and other RNA modifications using HydraPsiSeq protocol. Methods (San Diego Calif) 203:383–391. https://doi.org/10.1016/j.ymeth.2021.08.008

    Article  CAS  PubMed  Google Scholar 

  25. Birkedal U, Christensen-Dalsgaard M, Krogh N, Sabarinathan R, Gorodkin J, Nielsen H (2015) Profiling of ribose methylations in RNA by high-throughput sequencing. Angew Chem Int Ed Engl 54(2):451–455. https://doi.org/10.1002/anie.201408362

    Article  CAS  PubMed  Google Scholar 

  26. Pichot F, Marchand V, Ayadi L, Bourguignon-Igel V, Helm M, Motorin Y (2020) Holistic optimization of Bioinformatic analysis pipeline for detection and quantification of 2′-O-methylations in RNA by RiboMethSeq. Front Genet 11:38. https://doi.org/10.3389/fgene.2020.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y (2016) Illumina-based RiboMethSeq approach for mapping of 2′-O-Me residues in RNA. Nucleic Acids Res 44(16):e135. https://doi.org/10.1093/nar/gkw547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Helm M, Motorin Y (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18(5):275–291. https://doi.org/10.1038/nrg.2016.169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by ANR grants (MetRibo, D-erase) and Région Grand Est FRCR grants (EpiARN, ViroMOD) to the V.M./Y.M., and Deutsche Forschungsgemeinschaft (DFG) grants to M.H. [HE3397/17-1, SPP1784, and TRR319 RMaP, TP C01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Motorin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pichot, F., Marchand, V., Helm, M., Motorin, Y. (2023). Data Analysis Pipeline for Detection and Quantification of Pseudouridine (ψ) in RNA by HydraPsiSeq. In: Oliveira, P.H. (eds) Computational Epigenomics and Epitranscriptomics. Methods in Molecular Biology, vol 2624. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2962-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2962-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2961-1

  • Online ISBN: 978-1-0716-2962-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics