Skip to main content

mito-Ψ-Seq: A High-Throughput Method for Systematic Mapping of Pseudouridine Within Mitochondrial RNA

  • Protocol
  • First Online:
Mitochondrial Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2192))

Abstract

RNA modifications are present in most cellular RNAs and are formed posttranscriptionally by enzymatic machineries that involve hundreds of enzymes and cofactors. RNA modifications impact the life cycle of the RNA, its stability, folding, cellular localization, as well as interactions with RNA and protein partners. RNA modifications are important for mitochondrial function and are required for proper processing and function of mitochondrial (mt) tRNA and rRNA. Underscoring their importance, several mitochondrial diseases are caused by defects in mt-RNA modifications, stemming from mutations in mtDNA at or near mt-RNA modification sites or in nuclear-encoded mt-RNA modifying enzymes. A highly abundant RNA modification, involved in mitochondrial physiology and pathology is pseudouridylation (Ψ), which is catalyzed by enzymes of the Pseudouridine Synthase (PUS) family. Although some Ψ sites in mt-rRNA and mt-tRNA have been identified, little is known about the functional role of these modifications. Furthermore, it is unknown which enzyme facilitates the modification of each site and it is likely that many yet undiscovered mt-RNA modifications exist, as is evidenced by recent work showing some Ψ sites on mRNA. Here, we present mito-Ψ-Seq, a high-throughput method for semiquantitative mapping of Ψ in mt-RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797:607–618

    Article  CAS  Google Scholar 

  2. Burke PJ (2017) Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer Res 3:857–870

    Article  CAS  Google Scholar 

  3. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  Google Scholar 

  4. Mercer TR, Neph S, Dinger ME et al (2011) The human mitochondrial transcriptome. Cell 146:645–658

    Article  CAS  Google Scholar 

  5. Machnicka MA, Milanowska K, Osman Oglou O et al (2013) MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 41:D262–D267

    Article  CAS  Google Scholar 

  6. Arroyo JD, Jourdain AA, Calvo SE et al (2016) A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metab 24:875–885

    Article  CAS  Google Scholar 

  7. Auffinger P, Westhof E (1998) Effects of pseudouridylation on tRNA hydration and dynamics: a theoretical approach. In: Modification and editing of RNA. American Society of Microbiology, Washington, DC, pp 103–112

    Google Scholar 

  8. Durant PC, Davis DR (1997) The effect of pseudouridine and pH on the structure and dynamics of the anticodon stem-loop of tRNA (Lys, 3). Nucleic Acids Symp Ser (36):56–57

    Google Scholar 

  9. Motorin Y, Keith G, Simon C et al (1998) The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity. RNA 4:856–869

    Article  CAS  Google Scholar 

  10. Fernandez-Vizarra E, Berardinelli A, Valente L et al (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 44:173–180

    Article  CAS  Google Scholar 

  11. Zeharia A, Fischel-Ghodsian N, Casas K et al (2005) Mitochondrial myopathy, sideroblastic anemia, and lactic acidosis: an autosomal recessive syndrome in Persian Jews caused by a mutation in the PUS1 gene. J Child Neurol 20:449–452

    Article  Google Scholar 

  12. Zaganelli S, Rebelo-Guiomar P, Maundrell K et al (2017) The pseudouridine synthase RPUSD4 is an essential component of mitochondrial RNA granules. J Biol Chem 292:4519–4532

    Article  CAS  Google Scholar 

  13. Antonicka H, Choquet K, Lin Z-Y et al (2017) A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep 18:28–38

    Article  CAS  Google Scholar 

  14. Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–D1257

    Article  CAS  Google Scholar 

  15. Safra M, Sas-Chen A, Nir R et al (2017) The m(1)A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. https://doi.org/10.1038/nature24456

  16. Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162

    Article  CAS  Google Scholar 

  17. Safra M, Nir R, Farouq D et al (2017) TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res 27:393–406

    Article  CAS  Google Scholar 

  18. Carlile TM, Rojas-Duran MF, Zinshteyn B et al (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146

    Article  CAS  Google Scholar 

  19. Lovejoy AF, Riordan DP, Brown PO (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9:e110799

    Article  Google Scholar 

  20. Li X, Zhu P, Ma S et al (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11:592–597

    Article  CAS  Google Scholar 

  21. Grinberg M, Schwarz M, Zaltsman Y et al (2005) Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor alpha. Mol Cell Biol 25:4579–4590

    Article  CAS  Google Scholar 

  22. Minczuk M, He J, Duch AM et al (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 39:4284–4299

    Article  CAS  Google Scholar 

  23. Quinodoz SA, Ollikainen N, Tabak B et al (2018) Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174:744–757.e24

    Article  CAS  Google Scholar 

  24. Engreitz JM, Pandya-Jones A, McDonel P et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973

    Article  Google Scholar 

  25. Shishkin AA, Giannoukos G, Kucukural A et al (2015) Simultaneous generation of many RNA-seq libraries in a single reaction. Nat Methods 12:323–325

    Article  CAS  Google Scholar 

  26. Van Nostrand EL, Pratt GA, Shishkin AA et al (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13:508–514

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Schraga Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sas-Chen, A., Nir, R., Schwartz, S. (2021). mito-Ψ-Seq: A High-Throughput Method for Systematic Mapping of Pseudouridine Within Mitochondrial RNA. In: Minczuk, M., Rorbach, J. (eds) Mitochondrial Gene Expression. Methods in Molecular Biology, vol 2192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0834-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0834-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0833-3

  • Online ISBN: 978-1-0716-0834-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics