Skip to main content

Chemical Synthesis and Immunomodulatory Functions of Bacterial Lipid As

  • Protocol
  • First Online:
Glycolipids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2613))

Abstract

Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, and its active principle, lipid A, have immunostimulatory properties and thus potential to act as adjuvants. However, canonical LPS acts as an endotoxin by hyperstimulating the immune response. Therefore, it is necessary to structurally modify LPS and lipid A to minimize toxicity while maintaining adjuvant effects for use as vaccine adjuvants. Various studies have focused on the chemical synthetic method of lipid As and their structure-activity relationship, which are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kusumoto S, Fukase K, Shiba T (2010) Key structures of bacterial peptidoglycan and lipopolysaccharide triggering the innate immune system of higher animals: chemical synthesis and functional studies. Proc Jpn Acad Ser B Phys Biol Sci 86(4):322–337

    Article  Google Scholar 

  2. Wei MQ, Mengesha A, Good D, Anne J (2008) Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett 259(1):16–27. https://doi.org/10.1016/j.canlet.2007.10.034

    Article  Google Scholar 

  3. Coley WB (1991) The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin Orthop Relat Res 262:3–11

    Google Scholar 

  4. Leroux-Roels G (2010) Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine 28(Suppl 3):C25–C36. https://doi.org/10.1016/j.vaccine.2010.07.021

    Article  Google Scholar 

  5. E.T. Rietschel OW (1999) Endotoxin: historical perspectives. In Endotoxin in health and disease

    Google Scholar 

  6. Imoto M, Kusumoto S, Shiba T, Naoki H, Iwashita T, Rietschel ET, Wollenweber HW, Galanos C, Luderitz O (1983) Chemical-structure of Escherichia-Coli lipid-a – linkage site of acyl-groups in the disaccharide backbone. Tetrahedron Lett 24(37):4017–4020. https://doi.org/10.1016/S0040-4039(00)88251-9

    Article  Google Scholar 

  7. Imoto M, Kusumoto S, Shiba T, Rietschel ET, Galanos C, Luederitz O (1985) Chemical structure of Escherichia coli lipid a. Tetrahedron Lett 26(7):907–908

    Article  Google Scholar 

  8. Imoto M, Yoshimura H, Shimamoto T, Sakaguchi N, Kusumoto S, Shiba T (1987) Total synthesis of Escherichia coli lipid a, the endotoxically active principle of cell-surface lipopolysaccharide. Bull Chem Soc Jpn 60(6):2205–2214

    Article  Google Scholar 

  9. Molinaro A, Holst O, Di Lorenzo F, Callaghan M, Nurisso A, D'Errico G, Zamyatina A, Peri F, Berisio R, Jerala R, Jimenez-Barbero J, Silipo A, Martin-Santamaria S (2015) Chemistry of lipid a: at the heart of innate immunity. Chemistry 21(2):500–519. https://doi.org/10.1002/chem.201403923

    Article  Google Scholar 

  10. Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A (2021) A journey from structure to function of bacterial lipopolysaccharides. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c01321

  11. Shimoyama A, Fukase K (2021) Lipid A-mediated bacterial-host chemical ecology: synthetic research of bacterial lipid as and their development as adjuvants. Molecules 26(20). https://doi.org/10.3390/molecules26206294

  12. Flad HD, Loppnow H, Feist W, Wang MH, Brade H, Kusumoto S, Rietschel ET, Ulmer AJ (1989) Interleukin 1 and tumor necrosis factor: studies on the induction by lipopolysaccharide partial structures. Lymphokine Res 8(3):235–238

    Google Scholar 

  13. Wang MH, Feist W, Herzbeck H, Brade H, Kusumoto S, Rietschel ET, Flad HD, Ulmer AJ (1990) Suppressive effect of lipid A partial structures on lipopolysaccharide or lipid A-induced release of interleukin 1 by human monocytes. FEMS Microbiol Immunol 2(3):179–185. https://doi.org/10.1111/j.1574-6968.1990.tb03517.x

    Article  Google Scholar 

  14. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983. https://doi.org/10.1016/s0092-8674(00)80172-5

    Article  Google Scholar 

  15. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397. https://doi.org/10.1038/41131

    Article  Google Scholar 

  16. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088. https://doi.org/10.1126/science.282.5396.2085

    Article  Google Scholar 

  17. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384. https://doi.org/10.1038/ni.1863

    Article  Google Scholar 

  18. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189(11):1777–1782. https://doi.org/10.1084/jem.189.11.1777

    Article  Google Scholar 

  19. Akashi S, Nagai Y, Ogata H, Oikawa M, Fukase K, Kusumoto S, Kawasaki K, Nishijima M, Hayashi S, Kimoto M, Miyake K (2001) Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol 13(12):1595–1599. https://doi.org/10.1093/intimm/13.12.1595

    Article  Google Scholar 

  20. Ohto U, Fukase K, Miyake K, Satow Y (2007) Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316(5831):1632–1634. https://doi.org/10.1126/science.1139111

    Article  Google Scholar 

  21. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N, Lee H, Yoo OJ, Lee JO (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130(5):906–917. https://doi.org/10.1016/j.cell.2007.08.002

    Article  Google Scholar 

  22. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458(7242):1191–1195. https://doi.org/10.1038/nature07830

    Article  Google Scholar 

  23. Ohto U, Fukase K, Miyake K, Shimizu T (2012) Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A 109(19):7421–7426. https://doi.org/10.1073/pnas.1201193109

    Article  Google Scholar 

  24. Brade L, Brandenburg K, Kuhn HM, Kusumoto S, Macher I, Rietschel ET, Brade H (1987) The immunogenicity and antigenicity of lipid A are influenced by its physicochemical state and environment. Infect Immun 55(11):2636–2644

    Article  Google Scholar 

  25. Tanimura N, Saitoh S, Ohto U, Akashi-Takamura S, Fujimoto Y, Fukase K, Shimizu T, Miyake K (2014) The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane. Int Immunol 26(6):307–314. https://doi.org/10.1093/intimm/dxt071

    Article  Google Scholar 

  26. Fujimoto Y, Shimoyama A, Saeki A, Kitayama N, Kasamatsu C, Tsutsui H, Fukase K (2013) Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses. Mol BioSyst 9(5):987–996. https://doi.org/10.1039/c3mb25477a

    Article  Google Scholar 

  27. Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC (2007) The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316(5831):1628–1632. https://doi.org/10.1126/science.1138963

    Article  Google Scholar 

  28. Yoshizaki H, Fukuda N, Sato K, Oikawa M, Fukase K, Suda Y, Kusumoto S (2001) First total synthesis of the re-type lipopolysaccharide this work was supported by the research for the future program (No. 97L00502) from the Japan Society for the Promotion of Science. H.Y. is grateful for a JSPS Research Fellowship for Young Scientists (No. 1241) from the Japan Society for the Promotion of Science. The authors are grateful to Mr. Seiji Adachi for his skillful measurement of NMR spectra. Angew Chem Int Ed Engl 40(8):1475–1480

    Article  Google Scholar 

  29. Zhang Y, Gaekwad J, Wolfert MA, Boons GJ (2008) Innate immune responses of synthetic lipid A derivatives of Neisseria meningitidis. Chemistry 14(2):558–569. https://doi.org/10.1002/chem.200701165

    Article  Google Scholar 

  30. Shimoyama A, Saeki A, Tanimura N, Tsutsui H, Miyake K, Suda Y, Fujimoto Y, Fukase K (2011) Chemical synthesis of Helicobacter pylori lipopolysaccharide partial structures and their selective proinflammatory responses. Chemistry 17(51):14464–14474. https://doi.org/10.1002/chem.201003581

    Article  Google Scholar 

  31. Hynes SO, Ferris JA, Szponar B, Wadstrom T, Fox JG, O'Rourke J, Larsson L, Yaquian E, Ljungh A, Clyne M, Andersen LP, Moran AP (2004) Comparative chemical and biological characterization of the lipopolysaccharides of gastric and enterohepatic helicobacters. Helicobacter 9(4):313–323. https://doi.org/10.1111/j.1083-4389.2004.00237.x

    Article  Google Scholar 

  32. Nielsen H, Birkholz S, Andersen LP, Moran AP (1994) Neutrophil activation by Helicobacter pylori lipopolysaccharides. J Infect Dis 170(1):135–139

    Article  Google Scholar 

  33. Perez-Perez GI, Shepherd VL, Morrow JD, Blaser MJ (1995) Activation of human THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide. Infect Immun 63(4):1183–1187

    Article  Google Scholar 

  34. Danesh J, Wong Y, Ward M, Muir J (1999) Chronic infection with Helicobacter pylori, Chlamydia pneumoniae, or cytomegalovirus: population based study of coronary heart disease. Heart 81(3):245–247

    Article  Google Scholar 

  35. Triantafilou M, Gamper FG, Lepper PM, Mouratis MA, Schumann C, Harokopakis E, Schifferle RE, Hajishengallis G, Triantafilou K (2007) Lipopolysaccharides from atherosclerosis-associated bacteria antagonize TLR4, induce formation of TLR2/1/CD36 complexes in lipid rafts and trigger TLR2-induced inflammatory responses in human vascular endothelial cells. Cell Microbiol 9(8):2030–2039. https://doi.org/10.1111/j.1462-5822.2007.00935.x

    Article  Google Scholar 

  36. Imamura M, Tsutsui H, Yasuda K, Uchiyama R, Yumikura-Futatsugi S, Mitani K, Hayashi S, Akira S, Taniguchi S, Van Rooijen N, Tschopp J, Yamamoto T, Fujimoto J, Nakanishi K (2009) Contribution of TIR domain-containing adapter inducing IFN-beta-mediated IL-18 release to LPS-induced liver injury in mice. J Hepatol 51(2):333–341. https://doi.org/10.1016/j.jhep.2009.03.027

    Article  Google Scholar 

  37. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26(4):433–443. https://doi.org/10.1016/j.immuni.2007.03.008

    Article  Google Scholar 

  38. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192. https://doi.org/10.1038/nature13683

    Article  Google Scholar 

  39. Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, Matsuki T, Nonaka K, Shibata N, Gohda M, Kagiyama Y, Nochi T, Yuki Y, Fukuyama Y, Mukai A, Shinzaki S, Fujihashi K, Sasakawa C, Iijima H, Goto M, Umesaki Y, Benno Y, Kiyono H (2010) Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A 107(16):7419–7424. https://doi.org/10.1073/pnas.1001061107

    Article  Google Scholar 

  40. Kunisawa J, Kiyono H (2012) Alcaligenes is commensal bacteria habituating in the gut-associated lymphoid tissue for the regulation of intestinal IgA responses. Front Immunol 3:65. https://doi.org/10.3389/fimmu.2012.00065

    Article  Google Scholar 

  41. Kunisawa J, Nochi T, Kiyono H (2008) Immunological commonalities and distinctions between airway and digestive immunity. Trends Immunol 29(11):505–513. https://doi.org/10.1016/j.it.2008.07.008

    Article  Google Scholar 

  42. Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K (2010) Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu Rev Immunol 28:243–273. https://doi.org/10.1146/annurev-immunol-030409-101314

    Article  Google Scholar 

  43. Fung TC, Bessman NJ, Hepworth MR, Kumar N, Shibata N, Kobuley D, Wang K, Ziegler CGK, Goc J, Shima T, Umesaki Y, Sartor RB, Sullivan KV, Lawley TD, Kunisawa J, Kiyono H, Sonnenberg GF (2016) Lymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity 44(3):634–646. https://doi.org/10.1016/j.immuni.2016.02.019

    Article  Google Scholar 

  44. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D (2012) Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336(6086):1321–1325. https://doi.org/10.1126/science.1222551

    Article  Google Scholar 

  45. Shibata N, Kunisawa J, Hosomi K, Fujimoto Y, Mizote K, Kitayama N, Shimoyama A, Mimuro H, Sato S, Kishishita N, Ishii KJ, Fukase K, Kiyono H (2018) Lymphoid tissue-resident Alcaligenes LPS induces IgA production without excessive inflammatory responses via weak TLR4 agonist activity. Mucosal Immunol 11(3):693–702. https://doi.org/10.1038/mi.2017.103

    Article  Google Scholar 

  46. Shimoyama A, Di Lorenzo F, Yamaura H, Mizote K, Palmigiano A, Pither MD, Speciale I, Uto T, Masui S, Sturiale L, Garozzo D, Hosomi K, Shibata N, Kabayama K, Fujimoto Y, Silipo A, Kunisawa J, Kiyono H, Molinaro A, Fukase K (2021) Lipopolysaccharide from gut-associated lymphoid tissue-resident Alcaligenes faecalis: complete structure determination and chemical synthesis of its lipid As. Angew Chem Int Ed Engl 60:10023. https://doi.org/10.1002/anie.202012374

    Article  Google Scholar 

  47. Hosomi K, Shibata N, Shimoyama A, Uto T, Nagatake T, Tojima Y, Nishino T, Takeyama H, Fukase K, Kiyono H, Kunisawa J (2020) Lymphoid tissue-resident Alcaligenes establish an intracellular symbiotic environment by creating a unique energy shift in dendritic cells. Front Microbiol 11:561005. https://doi.org/10.3389/fmicb.2020.561005

    Article  Google Scholar 

  48. Hexa-acylated A. faecalis lipid A (Hexa-AfLA) is commercially available: https://www.peptide.co.jp/catalog/f-cat?k_code=24018-s

  49. Yoshii K, Hosomi K, Shimoyama A, Wang Y, Yamaura H, Nagatake T, Suzuki H, Lan H, Kiyono H, Fukase K, Kunisawa J (2020) Chemically synthesized Alcaligenes lipid A shows a potent and safe nasal vaccine adjuvant activity for the induction of Streptococcus pneumoniae-specific IgA and Th17 mediated protective immunity. Microorganisms 8(8). https://doi.org/10.3390/microorganisms8081102

  50. Wang Y, Hosomi K, Shimoyama A, Yoshii K, Yamaura H, Nagatake T, Nishino T, Kiyono H, Fukase K, Kunisawa J (2020) Adjuvant activity of synthetic lipid a of Alcaligenes, a gut-associated lymphoid tissue-resident commensal bacterium, to augment antigen-specific IgG and Th17 responses in systemic vaccine. Vaccines (Basel) 8(3). https://doi.org/10.3390/vaccines8030395

  51. Martin M, Michalek SM, Katz J (2003) Role of innate immune factors in the adjuvant activity of monophosphoryl lipid A. Infect Immun 71(5):2498–2507

    Article  Google Scholar 

  52. Shimoyama A, Saeki A, Tanimura N, Tsutsui H, Miyake K, Suda Y, Fujimoto Y, Fukase K (2011) Chemical synthesis of Helicobacter pylori lipopolysaccharide partial structures and their selective proinflammatory responses. Chem Eur J 17(51):14464–14474. https://doi.org/10.1002/chem.201003581

    Article  Google Scholar 

  53. Fujimoto Y, Shimoyama A, Suda Y, Fukase K (2012) Synthesis and immunomodulatory activities of Helicobacter pylori lipophilic terminus of lipopolysaccharide including lipid A. Carbohydr Res 356:37–43. https://doi.org/10.1016/j.carres.2012.03.013

    Article  Google Scholar 

  54. Fukase K, Fukase Y, Oikawa M, Liu WC, Suda Y, Kusumoto S (1998) Divergent synthesis and biological activities of lipid A analogues of shorter acyl chains. Tetrahedron 54(16):4033–4050. https://doi.org/10.1016/S0040-4020(98)00133-1

    Article  Google Scholar 

  55. Shiina I, Ibuka R, Kubota M (2002) A new condensation reaction for the synthesis of carboxylic esters from nearly equimolar amounts of carboxylic acids and alcohols using 2-methyl-6-nitrobenzoic anhydride. Chem Lett 3:286–287. https://doi.org/10.1246/Cl.2002.286

    Article  Google Scholar 

  56. Baudry D, Ephritikhine M, Felkin H (1978) Isomerization of allyl ethers catalyzed by cationic iridium complex [Ir(Cyclo-Octa-1,5-Diene)(Pmeph2)2]Pf6 – highly Stereoselective route to trans-Propenyl ethers. J Chem Soc Chem Commun 16:694–695. https://doi.org/10.1039/C39780000694

    Article  Google Scholar 

  57. Murray RW, Jeyaraman R (1985) Dioxiranes – synthesis and reactions of Methyldioxiranes. J Org Chem 50(16):2847–2853. https://doi.org/10.1021/Jo00216a007

    Article  Google Scholar 

  58. Mueller M, Lindner B, Kusumoto S, Fukase K, Schromm AB, Seydel U (2004) Aggregates are the biologically active units of endotoxin. J Biol Chem 279(25):26307–26313. https://doi.org/10.1074/jbc.M401231200

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Shimoyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shimoyama, A., Fukase, K. (2023). Chemical Synthesis and Immunomodulatory Functions of Bacterial Lipid As. In: Kabayama, K., Inokuchi, Ji. (eds) Glycolipids. Methods in Molecular Biology, vol 2613. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2910-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2910-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2909-3

  • Online ISBN: 978-1-0716-2910-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics