Skip to main content

Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research

  • Protocol
  • First Online:
Antibiotics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2601))

Abstract

Current research is focusing on ribosome heterogeneity as a response to changing environmental conditions and stresses. Altered stoichiometry and composition of ribosomal proteins as well as association of additional protein factors are mechanisms for shaping the protein expression profile or hibernating ribosomes. In this updated chapter, we present a method for the isolation of ribosomes to analyze antibiotic-induced changes in the composition of ribosomes in Bacillus subtilis or other bacteria. Ribosomes and associated proteins are isolated by ultracentrifugation, and proteins are identified and quantified using label-free mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McCoy LS, Xie Y, Tor Y (2011) Antibiotics that target protein synthesis. Wiley Interdiscip Rev RNA 2:209–232

    Article  PubMed  CAS  Google Scholar 

  2. Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12:35–48

    Article  PubMed  CAS  Google Scholar 

  3. Silva JC, Gorenstein MV, Li G-Z et al (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156

    Article  PubMed  CAS  Google Scholar 

  4. Byrgazov K, Vesper O, Moll I (2013) Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr Opin Microbiol 16:133–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Starosta AL, Lassak J, Jung K et al (2014) The bacterial translation stress response. FEMS Microbiol Rev 38:1172–1201

    Article  PubMed  CAS  Google Scholar 

  6. Sauert M, Temmel H, Moll I (2015) Heterogeneity of the translational machinery: variations on a common theme. Biochimie 114:39–47

    Article  PubMed  CAS  Google Scholar 

  7. Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Petibon C, Malik Ghulam M, Catala M et al (2021) Regulation of ribosomal protein genes: an ordered anarchy. Wiley Interdiscip Rev RNA 12:e1632

    Article  PubMed  CAS  Google Scholar 

  9. Gay DM, Lund AH, Jansson MD (2022) Translational control through ribosome heterogeneity and functional specialization. Trends Biochem Sci 47:66–81

    Article  PubMed  CAS  Google Scholar 

  10. Deusser E, Wittmann HG (1972) Ribosomal proteins: variation of the protein composition in Escherichia coli ribosomes as function of growth rate. Nature 238:269–270

    Article  PubMed  CAS  Google Scholar 

  11. van Duin J, Kurland CG (1970) Functional heterogeneity of the 30S ribosomal subunit of E. coli. Mol Gen Genet 109:169–176

    Article  PubMed  Google Scholar 

  12. Kurland CG, Voynow P, Hardy SJ et al (1969) Physical and functional heterogeneity of E. coli ribosomes. Cold Spring Harb Symp Quant Biol 34:17–24

    Article  PubMed  CAS  Google Scholar 

  13. Lilleorg S, Reier K, Pulk A et al (2019) Bacterial ribosome heterogeneity: changes in ribosomal protein composition during transition into stationary growth phase. Biochimie 156:169–180

    Article  PubMed  CAS  Google Scholar 

  14. Lilleorg S, Reier K, Volõnkin P et al (2020) Phenotypic effects of paralogous ribosomal proteins bL31A and bL31B in E. coli. Sci Rep 10:11682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nanamiya H, Akanuma G, Natori Y et al (2004) Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 52:273–283

    Article  PubMed  CAS  Google Scholar 

  16. Natori Y, Nanamiya H, Akanuma G et al (2007) A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis. Mol Microbiol 63:294–307

    Article  PubMed  CAS  Google Scholar 

  17. Chen Y-X, Xu Z-Y, Ge X et al (2020) Selective translation by alternative bacterial ribosomes. Proc Natl Acad Sci U S A 117:19487–19496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Agafonov DE, Kolb VA, Spirin AS (2001) Ribosome-associated protein that inhibits translation at the aminoacyl-tRNA binding stage. EMBO Rep 2:399–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Giangrossi M, Brandi A, Giuliodori AM et al (2007) Cold-shock-induced de novo transcription and translation of infA and role of IF1 during cold adaptation. Mol Microbiol 64:807–821

    Article  PubMed  CAS  Google Scholar 

  20. Giuliodori AM, Brandi A, Giangrossi M et al (2007) Cold-stress-induced de novo expression of infC and role of IF3 in cold-shock translational bias. RNA 13:1355–1365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wada A, Yamazaki Y, Fujita N et al (1990) Structure and probable genetic location of a "ribosome modulation factor" associated with 100S ribosomes in stationary-phase Escherichia coli cells. Proc Natl Acad Sci U S A 87:2657–2661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ueta M, Yoshida H, Wada C et al (2005) Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli. Genes Cells 10:1103–1112

    Article  PubMed  CAS  Google Scholar 

  23. Tagami K, Nanamiya H, Kazo Y et al (2012) Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. Microbiology 1:115–134

    Article  CAS  Google Scholar 

  24. McKay SL, Portnoy DA (2015) Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob Agents Chemother 59:6992–6999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kaberdina AC, Szaflarski W, Nierhaus KH et al (2009) An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis? Mol Cell 33:227–236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Delvillani F, Papiani G, Dehò G et al (2011) S1 ribosomal protein and the interplay between translation and mRNA decay. Nucleic Acids Res 39:7702–7715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Vesper O, Amitai S, Belitsky M et al (2011) Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147:147–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mauro VP, Matsuda D (2016) Translation regulation by ribosomes: increased complexity and expanded scope. RNA Biol 13:748–755

    Article  PubMed  Google Scholar 

  29. Mauro VP, Edelman GM (2002) The ribosome filter hypothesis. Proc Natl Acad Sci U S A 99:12031–12036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Schäkermann S, Prochnow P, Bandow JE (2017) Label-free quantitation of ribosomal proteins from Bacillus subtilis for antibiotic research. Methods Mol Biol 1520:291–306

    Article  PubMed  Google Scholar 

  31. Akanuma G, Nanamiya H, Natori Y et al (2012) Inactivation of ribosomal protein genes in Bacillus subtilis reveals importance of each ribosomal protein for cell proliferation and cell differentiation. J Bacteriol 194:6282–6291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Spedding G (1990) Isolation and analysis of ribosomes from prokaryotes, eukaryotes, and organelles. In: Spedding (ed) Ribosomes and protein synthesis. A practical approach. IRL Press, Oxford

    Google Scholar 

  33. Blaha G, Stelzl U, Spahn CM et al (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Birgit Klinkert and Johanna Roßmanith for the practical introduction into ribosome isolation and for technical support. Furthermore, we would like to thank Dörte Becher and Knut Büttner for sharing mass spectrometry protocols. Funding from the German Federal State of North Rhine Westphalia (NRW) is acknowledged for the mass spectrometer (“Forschungsgroßgeräte der Länder”) used in this protocol. JEB acknowledges funding from NRW from the grant “Translation of innovative antibiotics from NRW” for performing the original work and preparing the original chapter and from NRW and the European Union, European Regional Development Fund, Investing in your future (Research Infrastructure “Center for System-based Antibiotic Research (CESAR)”) for updating the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Schäkermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schäkermann, S., Dietze, P., Bandow, J.E. (2023). Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 2601. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2855-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2855-3_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2854-6

  • Online ISBN: 978-1-0716-2855-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics