Skip to main content

Assessing the Activity of Transcription Factor FoxO1

  • Protocol
  • First Online:
Transcription Factor Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2594))

Abstract

The transcription factor FoxO1 (forkhead box O1) regulates genes that are involved in development, metabolism, cellular innovation, longevity, and stress responses. Assessment of FoxO1 activity is therefore critical to understand the regulatory network of this transcription factor. FoxO1 transactivation activity relies on its ability to bind to the promoters of target genes, which is controlled by posttranslational modifications (e.g., dephosphorylation or phosphorylation) that may promote nuclear translocation or exclusion of FoxO1. In this chapter we describe the protocols for FoxO1 activity assessment using Western blotting analysis of the posttranslational modification of FoxO1 in whole cell lysates and ELISA of DNA binding activity of FoxO1 in nuclear extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng Z (2019) The FoxO-autophagy axis in health and disease. Trends Endocrinol Metab 30(9):658–671. https://doi.org/10.1016/j.tem.2019.07.009

    Article  CAS  PubMed  Google Scholar 

  2. Cheng Z (2015) FoxO1: mute for a tuned metabolism? Trends Endocrinol Metab 26(7):402–403. https://doi.org/10.1016/j.tem.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  3. Calissi G, Lam EW, Link W (2021) Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 20(1):21–38. https://doi.org/10.1038/s41573-020-0088-2

    Article  CAS  PubMed  Google Scholar 

  4. Cheng Z, White MF (2011) Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal 14(4):649–661. https://doi.org/10.1089/ars.2010.3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Der Heide LP, Hoekman MF, Smidt MP (2004) The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 380(Pt 2):297–309. https://doi.org/10.1042/BJ20040167

    Article  Google Scholar 

  6. Aoki M, Jiang H, Vogt PK (2004) Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci U S A 101(37):13613–13617. https://doi.org/10.1073/pnas.0405454101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamagata K, Daitoku H, Takahashi Y et al (2008) Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32(2):221–231. https://doi.org/10.1016/j.molcel.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  8. Zou P, Liu L, Zheng L et al (2014) Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle 13(23):3759–3767. https://doi.org/10.4161/15384101.2014.965977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang S, Xia P, Huang G et al (2016) FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat Commun 7:11023. https://doi.org/10.1038/ncomms11023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park CH, Skarra DV, Rivera AJ, Arriola DJ, Thackray VG (2014) Constitutively active FOXO1 diminishes activin induction of Fshb transcription in immortalized gonadotropes. PLoS One 9(11):e113839. https://doi.org/10.1371/journal.pone.0113839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brent MM, Anand R, Marmorstein R (2008) Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 16(9):1407–1416. https://doi.org/10.1016/j.str.2008.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Langlet F, Haeusler RA, Linden D et al (2017) Selective inhibition of FOXO1 activator/repressor balance modulates hepatic glucose handling. Cell 171(4):824–835. e818. https://doi.org/10.1016/j.cell.2017.09.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zanella F, Rosado A, Garcia B, Carnero A, Link W (2009) Using multiplexed regulation of luciferase activity and GFP translocation to screen for FOXO modulators. BMC Cell Biol 10:14. https://doi.org/10.1186/1471-2121-10-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu L, Tao Z, Zheng LD et al (2016) FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Discovery 2:16066. https://doi.org/10.1038/cddiscovery.2016.66

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chatterjee S, Daenthanasanmak A, Chakraborty P et al (2018) CD38-NAD(+)Axis regulates immunotherapeutic anti-tumor T cell response. Cell Metab 27(1):85–100. e108. https://doi.org/10.1016/j.cmet.2017.10.006

    Article  CAS  PubMed  Google Scholar 

  16. Chakraborty P, Vaena SG, Thyagarajan K et al (2019) Pro-survival lipid Sphingosine-1-phosphate metabolically programs T cells to limit anti-tumor activity. Cell Rep 28(7):1879–1893. e1877. https://doi.org/10.1016/j.celrep.2019.07.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tao Z, Shi L, Parke J et al (2021) Sirt1 coordinates with ERalpha to regulate autophagy and adiposity. Cell Death Discovery 7(1):53. https://doi.org/10.1038/s41420-021-00438-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tao Z, Liu L, Zheng LD, Cheng Z (2019) Autophagy in adipocyte differentiation. Methods Mol Biol 1854:45–53. https://doi.org/10.1007/7651_2017_65

    Article  CAS  PubMed  Google Scholar 

  19. Tao Z, Zheng LD, Smith C et al (2018) Estradiol signaling mediates gender difference in visceral adiposity via autophagy. Cell Death Dis 9(3):309. https://doi.org/10.1038/s41419-018-0372-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the American Heart Association Grant (18TPA34230082 to Z.C.) and the USDA National Institute of Food and Agriculture Grant (1020373 to Z.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shi, L., Tao, Z., Cheng, Z. (2023). Assessing the Activity of Transcription Factor FoxO1. In: Song, Q., Tao, Z. (eds) Transcription Factor Regulatory Networks. Methods in Molecular Biology, vol 2594. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2815-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2815-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2814-0

  • Online ISBN: 978-1-0716-2815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics