Skip to main content

High-Throughput Screening for Thermostable Polyester Hydrolases

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2555))

Abstract

Due to the promise of more sustainable recycling of plastics through biocatalytic degradation, the search for and engineering of polyester hydrolases have become a thriving field of research. Furthermore, among other methods, halo formation assays have become popular for the detection of polyester-hydrolase activity. However, established halo-formation assays are limited in their ability to screen for thermostable enzymes, which are particularly important for efficient plastic degradation. The incubation of screening plates at temperatures above 50 °C leads to cell lysis and death. Therefore, equivalent master plates are commonly required to maintain and identify the active strains found on the screening plates. This replica plating procedure necessitates 20- to 60-fold more plates than our method, assuming the screened library is transferred to 384-well microtiter plates or 96-well microtiter plates, respectively, to organize the colonies in a retraceable manner, thus significantly lowering throughput. Here, we describe a halo formation assay that is designed to screen thermostable polyesterases independent of master plates and colony replication, thereby markedly reducing the workload and increasing the throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. PlasticsEurope (2020) Plastics: a story of more than 100 years of innovation. In: PlasticsEurope. https://plasticseurope.org/plastics-explained/history-of-plastics/. Accessed 17 Feb 2022

  2. Baekeland LH (1909), Method of making insoluble products of phenol and formaldehyde. US 942699

    Google Scholar 

  3. Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans R Soc Lond Ser B Biol Sci 364:1977–1984. https://doi.org/10.1098/rstb.2008.0304

    Article  CAS  Google Scholar 

  4. Statista (2020) Global plastic production 1950–2020. In: Statista. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. Accessed 17 Feb 2022

  5. PlasticsEurope (2020) Plastics – The Facts 2020. In: PlasticsEurope. https://www.plasticseurope.org/de/resources/publications/4312-plastics-facts-2020. Accessed 17 Feb 2022

  6. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

    Article  CAS  PubMed  Google Scholar 

  8. WHO-World Health Organization (2019) Microplastics in drinking-water. World Health Organization. https://www.who.int/publications/i/item/9789241516198. Accessed 17 Feb 2022

  9. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51:6634–6647. https://doi.org/10.1021/acs.est.7b00423

    Article  CAS  PubMed  Google Scholar 

  10. Rochman CM, Browne MA, Underwood AJ, van Franeker JA, Thompson RC, Amaral-Zettler LA (2016) The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived. Ecology 97:302–312. https://doi.org/10.1890/14-2070.1

    Article  PubMed  Google Scholar 

  11. Barnes DKA, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond Ser B Biol Sci 364:1985–1998. https://doi.org/10.1098/rstb.2008.0205

    Article  CAS  Google Scholar 

  12. Sharma S, Chatterjee S (2017) Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res 24:21530–21547. https://doi.org/10.1007/s11356-017-9910-8

    Article  Google Scholar 

  13. Wei R, Tiso T, Bertling J, O’Connor K, Blank LM, Bornscheuer UT (2020) Possibilities and limitations of biotechnological plastic degradation and recycling. Nat Catal 3:867–871. https://doi.org/10.1038/s41929-020-00521-w

    Article  CAS  Google Scholar 

  14. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  15. Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol 10:1308–1322. https://doi.org/10.1111/1751-7915.12710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Molitor R, Bollinger A, Kubicki S, Loeschcke A, Jaeger K-E, Thies S (2020) Agar plate-based screening methods for the identification of polyester hydrolysis by Pseudomonas species. Microb Biotechnol 13:274–284. https://doi.org/10.1111/1751-7915.13418

  17. Howard GT, Vicknair J, Mackie RI (2001) Sensitive plate assay for screening and detection of bacterial polyurethanase activity. Lett Appl Microbiol 32:211–214. https://doi.org/10.1046/j.1472-765x.2001.00887.x

    Article  CAS  PubMed  Google Scholar 

  18. Howard GT, Hilliard NP (1999) Use of Coomassie blue-polyurethane interaction in screening of polyurethanase proteins and polyurethanolytic bacteria. Int Biodeterior Biodegradation 43:23–30. https://doi.org/10.1016/S0964-8305(98)00062-6

  19. Wei R, Oeser T, Barth M, Weigl N, Lübs A, Schulz-Siegmund M, Hacker MC, Zimmermann W (2014) Turbidimetric analysis of the enzymatic hydrolysis of polyethylene terephthalate nanoparticles. J Mol Catal B Enzym 103:72–78. https://doi.org/10.1016/j.molcatb.2013.08.010

    Article  CAS  Google Scholar 

  20. Belisário-Ferrari MR, Wei R, Schneider T, Honak A, Zimmermann W (2019) Fast turbidimetric assay for analyzing the enzymatic hydrolysis of polyethylene terephthalate model substrates. Biotechnol J 14:1800272. https://doi.org/10.1002/biot.201800272

    Article  CAS  Google Scholar 

  21. Charnock C (2021) A simple and novel method for the production of polyethylene terephthalate containing agar plates for the growth and detection of bacteria able to hydrolyze this plastic. J Microbiol Methods 185:106222. https://doi.org/10.1016/j.mimet.2021.106222

    Article  CAS  PubMed  Google Scholar 

  22. Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, Li X, Hazen T, Streit WR (2018) New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl Environ Microbiol 84:e02773. https://doi.org/10.1128/AEM.02773-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei R, Zimmermann W (2017) Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb Biotechnol 10:1302–1307. https://doi.org/10.1111/1751-7915.12714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ronkvist A, Xie W, Lu W, Gross R (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138. https://doi.org/10.1021/ma9005318

    Article  CAS  Google Scholar 

  25. Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeterior Biodegradation 49:245–252. https://doi.org/10.1016/S0964-8305(02)00051-3

    Article  CAS  Google Scholar 

  26. Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51:134–140. https://doi.org/10.1007/s002530051373

    Article  CAS  PubMed  Google Scholar 

  27. Marten E, Müller R-J, Deckwer W-D (2003) Studies on the enzymatic hydrolysis of polyesters I. low molecular mass model esters and aliphatic polyesters. Polym Degrad Stab 80:485–501. https://doi.org/10.1016/S0141-3910(03)00032-6

    Article  CAS  Google Scholar 

  28. Marten E, Müller R-J, Deckwer W-D (2005) Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters. Polym Degrad Stab 88:371–381. https://doi.org/10.1016/j.polymdegradstab.2004.12.001

    Article  CAS  Google Scholar 

  29. Alves NM, Mano JF, Balaguer E, Meseguer Dueñas JM, Gómez Ribelles JL (2002) Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate): a DSC study. Polymer 43:4111–4122. https://doi.org/10.1016/S0032-3861(02)00236-7

    Article  CAS  Google Scholar 

  30. Biffinger JC, Barlow DE, Cockrell AL, Cusick KD, Hervey WJ, Fitzgerald LA, Nadeau LJ, Hung CS, Crookes-Goodson WJ, Russell JN (2015) The applicability of Impranil®DLN for gauging the biodegradation of polyurethanes. Polym Degrad Stab 120:178–185. https://doi.org/10.1016/j.polymdegradstab.2015.06.020

    Article  CAS  Google Scholar 

  31. Sulaiman S, Yamato S, Kanaya E, Kim J-J, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78:1556–1562. https://doi.org/10.1128/AEM.06725-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130. https://doi.org/10.1016/0022-2836(86)90385-2

    Article  CAS  PubMed  Google Scholar 

  33. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234. https://doi.org/10.1016/j.pep.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  34. William Studier F, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) [6] Use of T7 RNA polymerase to direct expression of cloned genes. In: Methods in enzymology. Elsevier, pp 60–89. https://doi.org/10.1016/0076-6879(90)85008-C

  35. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177:4121–4130. https://journals.asm.org/doi/10.1128/jb.177.14.4121-4130.1995

  36. Sambrook J and Russell DW (2006) Amplification and Storage of a Cosmid Library: Amplification in Liquid Culture. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot4001

  37. Green MR, Sambrook J (2018) The Hanahan method for preparation and transformation of competent Escherichia coli: high-efficiency transformation. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot101188

  38. Myers J, Curtis B, Curtis W (2007) Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophysics 6:4. https://doi.org/10.1186/2046-1682-6-41

Download references

Acknowledgements

We would like to thank Covestro and CSC JÄKLECHEMIE for providing us with Impranil® DLN W50 for our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren Wei or Uwe T. Bornscheuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Branson, Y., Badenhorst, C.P.S., Pfaff, L., Buchmann, C., Wei, R., Bornscheuer, U.T. (2023). High-Throughput Screening for Thermostable Polyester Hydrolases. In: Streit, W.R., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 2555. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2795-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2795-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2794-5

  • Online ISBN: 978-1-0716-2795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics