Skip to main content

High-Throughput Screening Assays for Lipolytic Enzymes

  • Protocol
  • First Online:
Protein Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1685))

Abstract

Screening is defined as the identification of hits within a large library of variants of an enzyme or protein with a predefined property. In theory, each variant present in the respective library needs to be assayed; however, to save time and consumables, many screening regimes involve a primary round to identify clones producing active enzymes. Such primary or prescreenings for lipolytic enzyme activity are often carried out on agar plates containing pH indicators or substrates as triolein or tributyrin. Subsequently, high-throughput screening assays are usually performed in microtiter plate (MTP) format using chromogenic or fluorogenic substrates and, if available, automated liquid handling robotics. Here, we describe different assay systems to determine the activity and enantioselectivity of lipases and esterases as well as the synthesis of several substrates. We also report on the construction of a complete site saturation library derived from lipase A of Bacillus subtilis and its testing for detergent tolerance. This approach allows for the identification of amino acids affecting sensitivity or resistance against different detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Lehmann C, Sibilla F, Maugeri Z et al (2012) Reengineering CelA2 cellulase for hydrolysis in aqueous solutions of deep eutectic solvents and concentrated seawater. Green Chem 14:2719–2726

    Article  CAS  Google Scholar 

  2. Wong TS, Roccatano D, Schwaneberg U (2007) Steering directed protein evolution: strategies to manage combinatorial complexity of mutant libraries. Environ Microbiol 9:2645–2659

    Article  CAS  PubMed  Google Scholar 

  3. Kumar V, Yedavalli P, Gupta V et al (2014) Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures. Protein Eng Des Sel 27:73–82

    Article  PubMed  Google Scholar 

  4. Yedavalli P, Rao NM (2013) Engineering the loops in a lipase for stability in DMSO. Protein Eng Des Sel 26:317–324

    Article  CAS  PubMed  Google Scholar 

  5. Aharoni A, Thieme K, Chiu CP et al (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods 3:609–614

    Article  CAS  PubMed  Google Scholar 

  6. Becker S, Hobenreich H, Vogel A et al (2008) Single-cell high-throughput screening to identify enantioselective hydrolytic enzymes. Angew Chem Int Ed 47:5085–5088

    Article  CAS  Google Scholar 

  7. Liebl W, Angelov A, Juergensen J et al (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98:8099–8109

    Article  CAS  PubMed  Google Scholar 

  8. Chow J, Kovacic F, Dall Antonia Y et al (2012) The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases. PLoS One 7:e47665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cardenas F, Alvarez E, Castro-Alvarez MS et al (2001) Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J Mol Catal B: Enzym 14:111–123

    Article  CAS  Google Scholar 

  10. Pearson B, Wolf PL, Vazquez J (1963) A comparative study of a series of new indolyl compounds to localize beta-galactosidase in tissues. Lab Invest 12:1249–1259

    CAS  PubMed  Google Scholar 

  11. Ben-David A, Shoham G, Shoham Y (2008) A universal screening assay for glycosynthases: directed evolution of glycosynthase XynB2(E335G) suggests a general path to enhance activity. Chem Biol 15:546–551

    Article  CAS  PubMed  Google Scholar 

  12. Leis B, Angelov A, Mientus M et al (2015) Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus. Front Microbiol 6:275

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernandez-Alvaro E, Snajdrova R, Jochens H et al (2011) A combination of in vivo selection and cell sorting for the identification of enantioselective biocatalysts. Angew Chem Int Ed 50:8584–8587

    Article  CAS  Google Scholar 

  14. Wahler D, Reymond JL (2001) High-throughput screening for biocatalysts. Curr Opin Biotechnol 12:535–544

    Article  CAS  PubMed  Google Scholar 

  15. Reymond JL, Fluxa VS, Maillard N (2009) Enzyme assays. Chem Commun 2009:34–46

    Google Scholar 

  16. Lauinger B (2016) Kolorimetrische und fluorimetrische Assays – auf der Jagd nach neuen Biokatalysatoren für die Synthesechemie. Dissertation, Heinrich-Heine-University, Düsseldorf

    Google Scholar 

  17. Schmidt M, Bornscheuer UT (2005) High-throughput assays for lipases and esterases. Biomol Eng 22:51–56

    Article  CAS  PubMed  Google Scholar 

  18. Tallman KR, Beatty KE (2015) Far-red fluorogenic probes for esterase and lipase detection. ChemBioChem 16:70–75

    Article  CAS  PubMed  Google Scholar 

  19. Leroy E, Bensel N, Reymond JL (2003) A low background high-throughput screening (HTS) fluorescence assay for lipases and esterases using acyloxymethylethers of umbelliferone. Bioorg Med Chem Lett 13:2105–2108

    Article  CAS  PubMed  Google Scholar 

  20. Lavis LD, Chao TY, Raines RT (2011) Synthesis and utility of fluorogenic acetoxymethyl ethers. Chem Sci 2:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zadlo A, Koszelewski D, Borys F et al (2015) Mixed carbonates as useful substrates for a fluorogenic assay for lipases and esterases. ChemBioChem 16:677–682

    Article  CAS  PubMed  Google Scholar 

  22. Nyfeler E, Grognux J, Wahler D et al (2016) A sensitive and selective high-throughput screening fluorescence assay for lipases and esterases. Helv Chim Acta 86:2919–2927

    Article  Google Scholar 

  23. Babiak P, Reymond JL (2005) A high-throughput, low-volume enzyme assay on solid support. Anal Chem 77:373–377

    Article  CAS  PubMed  Google Scholar 

  24. Reymond JL (2008) Substrate arrays for fluorescence-based enzyme fingerprinting and high-throughput screening. Ann N Y Acad Sci 1130:12–20

    Article  CAS  PubMed  Google Scholar 

  25. Maillard N, Babiak P, Syed S et al (2011) Five- substrate cocktail as a sensor array for measuring enzyme activity fingerprints of lipases and esterases. Anal Chem 83:1437–1442

    Article  CAS  PubMed  Google Scholar 

  26. Wang B, Tang X, Ren G et al (2009) A new high-throughput screening method for determining active and enantioselective hydrolases. Biochem Eng J 46:345–349

    Article  CAS  Google Scholar 

  27. Rachinskiy K, Schultze H, Boy M et al (2009) Enzyme test bench: a high-throughput enzyme characterization technique including the long-term stability. Biotechnol Bioeng 103:305–322

    Article  CAS  PubMed  Google Scholar 

  28. Liu AMF, Somers NA, Kazlauskas RJ et al (2001) Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Ophiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetrahedron: Asymmetr 12:545–556

    Article  Google Scholar 

  29. Franken B, Jaeger KE, Pietruszka J (2016) Screening for enantioselective enzymes. Springer, Berlin

    Google Scholar 

  30. Baumann M, Stürmer R, Bornscheuer UT (2001) A high-throughput‐screening method for the identification of active and enantioselective hydrolases. Angew Chem Int Ed 40:4201–4204

    Article  CAS  Google Scholar 

  31. Andersen RJ, Brask J (2016) Synthesis and evaluation of fluorogenic triglycerides as lipase assay substrates. Chem Phys Lipids 198:72–79

    Article  CAS  PubMed  Google Scholar 

  32. Trapp O (2007) Boosting the throughput of separation techniques by “multiplexing”. Angew Chem Int Ed 46:5609–5613

    Article  CAS  Google Scholar 

  33. Reetz M, Kühling KM, Wilensek S (2001) A GC-based method for high-throughput screening of enantioselective catalysts. Catal Today 67:389–396

    Article  CAS  Google Scholar 

  34. Reetz MT, Kuhling KM, Hinrichs H (2000) Circular dichroism as a detection method in the screening of enantioselective catalysts. Chirality 12:479–482

    Article  CAS  PubMed  Google Scholar 

  35. Schrader W, Eipper A, Pugh DJ (2002) Second-generation MS-based high-throughput screening system for enantioselective catalysts and biocatalysts. Can J Chem 80:626–632

    Article  CAS  Google Scholar 

  36. Reetz MT, Eipper A, Tielmann P et al (2016) A practical NMR-based high-throughput assay for screening enantioselective catalysts and biocatalysts. Adv Synth Catal 344:1008–1016

    Article  Google Scholar 

  37. Henke E, Bornscheuer UT (1999) Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay. Biol Chem 380:1029–1033

    Article  CAS  PubMed  Google Scholar 

  38. Engstrom K, Nyhlen J, Sandstrom AG (2010) Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha- substituted esters. J Am Chem Soc 132:7038–7042

    Article  PubMed  Google Scholar 

  39. Janes LE, Kazlauskas RJ (1997) Quick E. A fast spectrophotometric method to measure the enantioselectivity of hydrolases. J Org Chem 62:4560–4561

    Article  CAS  Google Scholar 

  40. Lima MLSO, Gonçalves CCS, Barreiro JC et al (2015) High-throughput enzymatic enantiomeric excess: Quick-ee. J Braz Chem Soc 26:319–324

    CAS  Google Scholar 

  41. Ke D, Zhan C, Li X et al (2009) The urea-dipeptides show stronger H-bonding propensity to nucleate β-sheetlike assembly than natural sequence. Tetrahedron 65:8269–8276

    Article  CAS  Google Scholar 

  42. Qian L, Liu JY, Liu JY et al (2011) Fingerprint lipolytic enzymes with chromogenic p-nitrophenyl esters of structurally diverse carboxylic acids. J Mol Catal B: Enzym 73:22–26

    CAS  Google Scholar 

  43. Jin C, Li J, Su W (2009) Ytterbium triflate catalysed Friedel–Crafts reaction using carboxylic acids as acylating reagents under solvent-free conditions. J Chem Res 2009:607–611

    Article  Google Scholar 

  44. Kobayashi S, Matsubara R, Nakamura Y et al (2003) Catalytic, asymmetric Mannich-type reactions of N-acylimino esters: reactivity, diastereo- and enantioselectivity, and application to synthesis of N-acylated amino acid derivatives. J Am Chem Soc 125:2507–2515

    Article  CAS  PubMed  Google Scholar 

  45. Bongen P (2014) Chemoenzymatische Synthesen - Hydrolasen in Methodik und Anwendung. Dissertation, Heinrich-Heine-University, Düsseldorf

    Google Scholar 

  46. Liu Z, Ma Q, Liu Y et al (2013) 4-(N,N-Dimethylamino)pyridine hydrochloride as a recyclable catalyst for acylation of inert alcohols: substrate scope and reaction mechanism. Org Lett 16:236–239

    Article  PubMed  Google Scholar 

  47. Lu N, Chang WH, Tu WH et al (2011) A salt made of 4-N,N-dimethylaminopyridine (DMAP) and saccharin as an efficient recyclable acylation catalyst: a new bridge between heterogeneous and homogeneous catalysis. Chem Commun 47:7227–7229

    Article  CAS  Google Scholar 

  48. Fulton A, Frauenkron-Machedjou VJ, Skoczinski P et al (2015) Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance. ChemBioChem 16:930–936

    Article  CAS  PubMed  Google Scholar 

  49. Edelheit O, Hanukoglu A, Hanukoglu I (2009) Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol 9:61

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nov Y, Fulton A, Jaeger KE (2013) Optimal scanning of all single-point mutants of a protein. J Comput Biol 20:990–997

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Erich Jaeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fulton, A., Hayes, M.R., Schwaneberg, U., Pietruszka, J., Jaeger, KE. (2018). High-Throughput Screening Assays for Lipolytic Enzymes. In: Bornscheuer, U., Höhne, M. (eds) Protein Engineering. Methods in Molecular Biology, vol 1685. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7366-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7366-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7364-4

  • Online ISBN: 978-1-4939-7366-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics