Skip to main content

Methods to Study West Nile Virus Infection and the Virus-Induced Inflammation in the Brain in a Murine Model

  • Protocol
  • First Online:
West Nile Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2585))

Abstract

West Nile virus (WNV), a mosquito-borne neurotropic flavivirus, has become the leading cause of vector-borne viral encephalitis in the United States for the past decades. The murine model of WNV infection is an effective in vivo experimental model to investigate WNV neuropathogenesis in humans. Here, we describe several laboratory protocols to study WNV infection and the virus-induced inflammation in the brain in both in vitro and in vivo murine models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carson PJ, Konewko P, Wold KS et al (2006) Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clin Infect Dis 43(6):723–730. https://doi.org/10.1086/506939

    Article  PubMed  Google Scholar 

  2. Ou AC, Ratard RC (2005) One-year sequelae in patients with West Nile virus encephalitis and meningitis in Louisiana. J La State Med Soc 157(1):42–46

    PubMed  Google Scholar 

  3. Sadek JR, Pergam SA, Harrington JA et al (2010) Persistent neuropsychological impairment associated with West Nile virus infection. J Clin Exp Neuropsychol 32(1):81–87. https://doi.org/10.1080/13803390902881918

    Article  PubMed  Google Scholar 

  4. Nash D, Mostashari F, Fine A et al (2001) The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344(24):1807–1814

    Article  CAS  PubMed  Google Scholar 

  5. Petersen LR, Brault AC, Nasci RS (2013) West Nile virus: review of the literature. JAMA 310(3):308–315. https://doi.org/10.1001/jama.2013.8042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beasley DW, Li L, Suderman MT et al (2002) Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296(1):17–23. https://doi.org/10.1006/viro.2002.1372

    Article  CAS  PubMed  Google Scholar 

  7. Samuel MA, Diamond MS (2006) Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80(19):9349–9360. https://doi.org/10.1128/JVI.01122-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arjona A, Foellmer HG, Town T et al (2007) Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest 117(10):3059–3066. https://doi.org/10.1172/JCI32218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Daniels BP, Holman DW, Cruz-Orengo L et al (2014) Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio 5(5):e01476–e01414. https://doi.org/10.1128/mBio.01476-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang T, Town T, Alexopoulou L et al (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10(12):1366–1373. https://doi.org/10.1038/nm1140

    Article  CAS  PubMed  Google Scholar 

  11. Zhang B, Patel J, Croyle M et al (2010) TNF-alpha-dependent regulation of CXCR3 expression modulates neuronal survival during West Nile virus encephalitis. J Neuroimmunol 224(1–2):28–38. https://doi.org/10.1016/j.jneuroim.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quick ED, Leser JS, Clarke P et al (2014) Activation of intrinsic immune responses and microglial phagocytosis in an ex vivo spinal cord slice culture model of West Nile virus infection. J Virol 88(22):13005–13014. https://doi.org/10.1128/jvi.01994-14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shrestha B, Gottlieb D, Diamond MS (2003) Infection and injury of neurons by West Nile encephalitis virus. J Virol 77(24):13203–13213. https://doi.org/10.1128/jvi.77.24.13203-13213.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo H, Winkelmann ER, Zhu S et al (2018) Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection. J Clin Invest 128(11):4980–4991. https://doi.org/10.1172/JCI99902

    Article  PubMed  PubMed Central  Google Scholar 

  15. Parquet MC, Kumatori A, Hasebe F et al (2001) West Nile virus-induced bax-dependent apoptosis. FEBS Lett 500(1–2):17–24. https://doi.org/10.1016/s0014-5793(01)02573-x

    Article  CAS  PubMed  Google Scholar 

  16. Brehin AC, Mouries J, Frenkiel MP et al (2008) Dynamics of immune cell recruitment during West Nile encephalitis and identification of a new CD19+B220-BST-2+ leukocyte population. J Immunol 180(10):6760–6767. https://doi.org/10.4049/jimmunol.180.10.6760

    Article  CAS  PubMed  Google Scholar 

  17. Glass WG, Lim JK, Cholera R et al (2005) Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202(8):1087–1098. https://doi.org/10.1084/jem.20042530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lim JK, Obara CJ, Rivollier A et al (2011) Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J Immunol 186(1):471–478. https://doi.org/10.4049/jimmunol.1003003

    Article  CAS  PubMed  Google Scholar 

  19. Sitati E, McCandless EE, Klein RS et al (2007) CD40-CD40 ligand interactions promote trafficking of CD8+ T cells into the brain and protection against West Nile virus encephalitis. J Virol 81(18):9801–9811. https://doi.org/10.1128/JVI.00941-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sitati EM, Diamond MS (2006) CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 80(24):12060–12069. https://doi.org/10.1128/JVI.01650-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiao SY, Guzman H, Zhang H et al (2001) West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 7(4):714–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Welte T, Aronson J, Gong B et al (2011) Vgamma4+ T cells regulate host immune response to West Nile virus infection. FEMS Immunol Med Microbiol 63(2):183–192. https://doi.org/10.1111/j.1574-695X.2011.00840.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maximova OA, Pletnev AG (2018) Flaviviruses and the central nervous system: revisiting neuropathological concepts. Annu Rev Virol 5(1):255–272. https://doi.org/10.1146/annurev-virology-092917-043439

    Article  CAS  PubMed  Google Scholar 

  24. Ghosh Roy S, Sadigh B, Datan E et al (2014) Regulation of cell survival and death during Flavivirus infections. World J Biol Chem 5(2):93–105. https://doi.org/10.4331/wjbc.v5.i2.93

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants R01 AI127744 (T.W.) and R21 AI140569 (T.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luo, H., Wang, T. (2023). Methods to Study West Nile Virus Infection and the Virus-Induced Inflammation in the Brain in a Murine Model. In: Bai, F. (eds) West Nile Virus. Methods in Molecular Biology, vol 2585. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2760-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2760-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2759-4

  • Online ISBN: 978-1-0716-2760-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics