Skip to main content

Electrophysiology of Endocannabinoid Signaling

  • Protocol
  • First Online:
Endocannabinoid Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2576))

Abstract

Electrophysiological technique is an efficient tool for investigating the synaptic regulatory effects mediated by the endocannabinoid system. Stimulation of presynaptic type 1 cannabinoid receptor (CB1) is the principal mode by which endocannabinoids suppress transmitter release in the central nervous system, but a non-retrograde manner of functioning and other receptors have also been described. Endocannabinoids are key modulators of both short- and long-term plasticity. Here, we discuss ex vivo electrophysiological approaches to examine synaptic signaling induced by cannabinoid and endocannabinoid molecules in the mammalian brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herkenham M, Lynn AB, Little MD et al (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87:1932–1936. https://doi.org/10.1073/pnas.87.5.1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Katona I, Freund TF (2012) Multiple functions of endocannabinoid signaling in the brain. Annu Rev Neurosci 35:529–558. https://doi.org/10.1146/annurev-neuro-062111-150420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kano M, Ohno-Shosaku T, Hashimotodani Y et al (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380. https://doi.org/10.1152/physrev.00019.2008

    Article  CAS  PubMed  Google Scholar 

  4. Chevaleyre V, Heifets BD, Kaeser PS et al (2007) Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 54:801–812. https://doi.org/10.1016/j.neuron.2007.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heifets BD, Castillo PE (2009) Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 71:283–306. https://doi.org/10.1146/annurev.physiol.010908.163149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu H-C, Mackie K (2016) An introduction to the endogenous cannabinoid system. Biol Psychiatry 79:516–525. https://doi.org/10.1016/j.biopsych.2015.07.028

    Article  CAS  PubMed  Google Scholar 

  7. Monday HR, Younts TJ, Castillo PE (2018) Long-term plasticity of neurotransmitter release: emerging mechanisms and contributions to brain function and disease. Annu Rev Neurosci 41:299–322. https://doi.org/10.1146/annurev-neuro-080317-062155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerdeman G, Lovinger DM (2001) CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468–471. https://doi.org/10.1152/jn.2001.85.1.468

    Article  CAS  PubMed  Google Scholar 

  9. Morales P, Hurst DP, Reggio PH (2017) Molecular targets of the Phytocannabinoids: a complex picture. Prog Chem Org Nat Prod 103:103–131. https://doi.org/10.1007/978-3-319-45541-9_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morales P, Jagerovic N (2016) Advances towards the discovery of GPR55 ligands. Curr Med Chem 23:2087–2100. https://doi.org/10.2174/0929867323666160425113836

    Article  CAS  PubMed  Google Scholar 

  11. Pertwee RG, Howlett AC, Abood ME et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62:588–631. https://doi.org/10.1124/pr.110.003004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muller C, Morales P, Reggio PH (2019) Cannabinoid ligands targeting TRP channels. Front Mol Neurosci 11:1–15. https://doi.org/10.3389/fnmol.2018.00487

    Article  CAS  Google Scholar 

  13. Gerdeman GL, Lovinger DM (2003) Emerging roles for endocannabinoids in long-term synaptic plasticity. Br J Pharmacol 140:781–789. https://doi.org/10.1038/sj.bjp.0705466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76:70–81. https://doi.org/10.1016/j.neuron.2012.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gerdeman GL, Ronesi J, Lovinger DM (2002) Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446–451. https://doi.org/10.1038/nn832

    Article  CAS  PubMed  Google Scholar 

  16. Safo PK, Regehr WG (2005) Endocannabinoids control the induction of cerebellar LTD. Neuron 48:647–659. https://doi.org/10.1016/j.neuron.2005.09.020

    Article  CAS  PubMed  Google Scholar 

  17. Sjöström PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641–654. https://doi.org/10.1016/s0896-6273(03)00476-8

    Article  PubMed  Google Scholar 

  18. Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38:461–472. https://doi.org/10.1016/s0896-6273(03)00235-6

    Article  CAS  PubMed  Google Scholar 

  19. Marsicano G, Wotjak CT, Azad SC et al (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534. https://doi.org/10.1038/nature00839

    Article  CAS  PubMed  Google Scholar 

  20. An D, Peigneur S, Hendrickx LA, Tytgat J (2020) Targeting cannabinoid receptors: current status and prospects of natural products. Int J Mol Sci 21:5064. https://doi.org/10.3390/ijms21145064

    Article  CAS  PubMed Central  Google Scholar 

  21. Shen M, Piser TM, Seybold VS, Thayer SA (1996) Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci 16:4322. https://doi.org/10.1523/JNEUROSCI.16-14-04322.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572. https://doi.org/10.1016/S0165-6147(00)01805-8

    Article  CAS  PubMed  Google Scholar 

  23. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592. https://doi.org/10.1038/35069076

    Article  CAS  PubMed  Google Scholar 

  24. Daniel H, Rancillac A, Crepel F (2004) Mechanisms underlying cannabinoid inhibition of presynaptic Ca2+ influx at parallel fibre synapses of the rat cerebellum. J Physiol 557:159–174. https://doi.org/10.1113/jphysiol.2004.063263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robbe D, Kopf M, Remaury A et al (2002) Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci U S A 99:8384–8388. https://doi.org/10.1073/pnas.122149199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Auclair N, Otani S, Soubrie P, Crepel F (2000) Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J Neurophysiol 83:3287–3293. https://doi.org/10.1152/jn.2000.83.6.3287

    Article  CAS  PubMed  Google Scholar 

  27. Basavarajappa BS, Subbanna S (2014) CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations. Hippocampus 24:178–188. https://doi.org/10.1002/hipo.22213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoffman AF, Lycas MD, Kaczmarzyk JR et al (2017) Disruption of hippocampal synaptic transmission and long-term potentiation by psychoactive synthetic cannabinoid ‘Spice’ compounds: comparison with Δ9-tetrahydrocannabinol. Addict Biol 22:390–399. https://doi.org/10.1111/adb.12334

    Article  CAS  PubMed  Google Scholar 

  29. Monday HR, Bourdenx M, Jordan BA, Castillo PE (2020) CB(1)-receptor-mediated inhibitory LTD triggers presynaptic remodeling via protein synthesis and ubiquitination. eLife 9:10.7554/eLife.54812

    Article  Google Scholar 

  30. Báldi R, Ghosh D, Grueter BA, Patel S (2016) Electrophysiological measurement of cannabinoid-mediated synaptic modulation in acute mouse brain slices. Curr Protoc Neurosci 75:6.29.1–6.29.19. https://doi.org/10.1002/cpns.8

    Article  Google Scholar 

  31. Ohno-Shosaku T, Tanimura A, Hashimotodani Y, Kano M (2012) Endocannabinoids and retrograde modulation of synaptic transmission. Neuroscientist 18:119–132. https://doi.org/10.1177/1073858410397377

    Article  CAS  PubMed  Google Scholar 

  32. Maejima T, Hashimoto K, Yoshida T et al (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31:463–475. https://doi.org/10.1016/S0896-6273(01)00375-0

    Article  CAS  PubMed  Google Scholar 

  33. Rouach N, Nicoll RA (2003) Endocannabinoids contribute to short-term but not long-term mGluR-induced depression in the hippocampus. Eur J Neurosci 18:1017–1020. https://doi.org/10.1046/j.1460-9568.2003.02823.x

    Article  PubMed  Google Scholar 

  34. Kushmerick C, Price GD, Taschenberger H et al (2004) Retroinhibition of presynaptic Ca2+ currents by endocannabinoids released via postsynaptic mglur activation at a calyx synapse. J Neurosci 24:5955. https://doi.org/10.1523/JNEUROSCI.0768-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varma N, Carlson GC, Ledent C, Alger BE (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 21:RC188. https://doi.org/10.1523/JNEUROSCI.21-24-j0003.2001

  36. Hashimotodani Y, Ohno-shosaku T, Watanabe M, Kano M (2007) Roles of phospholipase Cβ and NMDA receptor in activity-dependent endocannabinoid release. J Physiol 584:373–380. https://doi.org/10.1113/jphysiol.2007.137497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fukudome Y, Ohno-Shosaku T, Matsui M et al (2004) Two distinct classes of muscarinic action on hippocampal inhibitory synapses: M2-mediated direct suppression and M1/M3-mediated indirect suppression through endocannabinoid signalling. Eur J Neurosci 19:2682–2692. https://doi.org/10.1111/j.0953-816x.2004.03384.x

    Article  PubMed  Google Scholar 

  38. Musella A, de Chiara V, Rossi S et al (2010) Transient receptor potential vanilloid 1 channels control acetylcholine/2-arachidonoylglicerol coupling in the striatum. Neuroscience 167:864–871. https://doi.org/10.1016/j.neuroscience.2010.02.058

    Article  CAS  PubMed  Google Scholar 

  39. Földy C, Malenka RC, Südhof TC (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78:498–509. https://doi.org/10.1016/j.neuron.2013.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim J, Alger BE (2010) Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat Neurosci 13:592–600. https://doi.org/10.1038/nn.2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee S-H, Ledri M, Tóth B et al (2015) Multiple forms of endocannabinoid and Endovanilloid signaling regulate the tonic control of GABA release. J Neurosci 35:10039–10057. https://doi.org/10.1523/JNEUROSCI.4112-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramikie TS, Nyilas R, Bluett RJ et al (2014) Multiple mechanistically distinct modes of endocannabinoid mobilization at central amygdala glutamatergic synapses. Neuron 81:1111–1125. https://doi.org/10.1016/j.neuron.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Presynaptic monoacylglycerol lipase activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus. J Neurosci 27:1211–1219. https://doi.org/10.1523/JNEUROSCI.4159-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pan B, Wang W, Zhong P et al (2011) Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice. J Neurosci 31:13420–13430. https://doi.org/10.1523/JNEUROSCI.2075-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schlosburg JE, Blankman JL, Long JZ et al (2010) Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 13:1113–1119. https://doi.org/10.1038/nn.2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Szabo B, Urbanski MJ, Bisogno T et al (2006) Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J Physiol 577:263–280. https://doi.org/10.1113/jphysiol.2006.119362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gulyas AI, Cravatt BF, Bracey MH et al (2004) Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci 20:441–458. https://doi.org/10.1111/j.1460-9568.2004.03428.x

    Article  CAS  PubMed  Google Scholar 

  48. Kim J, Alger BE (2004) Inhibition of cyclooxygenase-2 potentiates retrograde endocannabinoid effects in hippocampus. Nat Neurosci 7:697–698. https://doi.org/10.1038/nn1262

    Article  CAS  PubMed  Google Scholar 

  49. Gubellini P, Picconi B, Bari M et al (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22:6900–6907. https://doi.org/10.1523/JNEUROSCI.22-16-06900.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maccarrone M, Rossi S, Bari M et al (2008) Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci 11:152–159. https://doi.org/10.1038/nn2042

    Article  CAS  PubMed  Google Scholar 

  51. Cavanaugh DJ, Chesler AT, Bráz JM et al (2011) Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J Neurosci 31:10119–10127. https://doi.org/10.1523/JNEUROSCI.1299-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cristino L, de Petrocellis L, Pryce G et al (2006) Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience 139:1405–1415. https://doi.org/10.1016/j.neuroscience.2006.02.074

    Article  CAS  PubMed  Google Scholar 

  53. Roberts JC, Davis JB, Benham CD (2004) [3H]Resiniferatoxin autoradiography in the CNS of wild-type and TRPV1 null mice defines TRPV1 (VR-1) protein distribution. Brain Res 995:176–183. https://doi.org/10.1016/j.brainres.2003.10.001

    Article  CAS  PubMed  Google Scholar 

  54. Tóth A, Boczán J, Kedei N et al (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168. https://doi.org/10.1016/j.molbrainres.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  55. Mezey E, Tóth ZE, Cortright DN et al (2000) Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc Natl Acad Sci U S A 97:3655–3660. https://doi.org/10.1073/pnas.060496197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Puente N, Cui Y, Lassalle O et al (2011) Polymodal activation of the endocannabinoid system in the extended amygdala. Nat Neurosci 14:1542–1547. https://doi.org/10.1038/nn.2974

    Article  CAS  PubMed  Google Scholar 

  57. Smart D, Gunthorpe MJ, Jerman JC et al (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129:227–230. https://doi.org/10.1038/sj.bjp.0703050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zygmunt PM, Petersson J, Andersson DA et al (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457. https://doi.org/10.1038/22761

    Article  CAS  PubMed  Google Scholar 

  59. Di Marzo V, De Petrocellis L, Fezza F et al (2002) Anandamide receptors. Prostaglandins Leukot Essent Fatty Acids 66:377–391. https://doi.org/10.1054/plef.2001.0349

    Article  PubMed  Google Scholar 

  60. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517. https://doi.org/10.1146/annurev.neuro.24.1.487

    Article  CAS  PubMed  Google Scholar 

  61. Musella A, de Chiara V, Rossi S et al (2009) TRPV1 channels facilitate glutamate transmission in the striatum. Mol Cell Neurosci 40:89–97. https://doi.org/10.1016/j.mcn.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  62. Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13:1519–1525. https://doi.org/10.1038/nn.2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chávez AE, Chiu CQ, Castillo PE (2010) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. Nat Neurosci 13:1511–1518. https://doi.org/10.1038/nn.2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jhaveri MD, Richardson D, Kendall DA et al (2006) Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain. J Neurosci 26:13318–13327. https://doi.org/10.1523/JNEUROSCI.3326-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maione S, Bisogno T, de Novellis V et al (2006) Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 r. J Pharmacol Exp Ther 316:969–982. https://doi.org/10.1124/jpet.105.093286

    Article  CAS  PubMed  Google Scholar 

  66. Makara JK, Mor M, Fegley D et al (2005) Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 8:1139–1141. https://doi.org/10.1038/nn1521

    Article  CAS  PubMed  Google Scholar 

  67. Melis M, Pillolla G, Bisogno T et al (2006) Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiol Dis 24:15–27. https://doi.org/10.1016/j.nbd.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  68. Lerner TN, Kreitzer AC (2012) RGS4 is required for dopaminergic control of striatal LTD and susceptibility to parkinsonian motor deficits. Neuron 73:347–359. https://doi.org/10.1016/j.neuron.2011.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Verme J, Fu J, Astarita G et al (2005) The nuclear receptor peroxisome proliferator-activated receptor- mediates the anti-inflammatory actions of Palmitoylethanolamide. Mol Pharmacol 67:15–19. https://doi.org/10.1124/mol.104.006353

    Article  CAS  PubMed  Google Scholar 

  70. Petrosino S, Iuvone T, di Marzo V (2010) N-palmitoyl-ethanolamine: biochemistry and new therapeutic opportunities. Biochimie 92:724–727. https://doi.org/10.1016/j.biochi.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  71. Marichal-Cancino BA, Fajardo-Valdez A, Ruiz-Contreras AE et al (2017) Advances in the physiology of GPR55 in the central nervous system. Curr Neuropharmacol 15:771–778. https://doi.org/10.2174/1570159X14666160729155441

    Article  CAS  PubMed  Google Scholar 

  72. di Marzo V, Bisogno T, de petrocellis L (2001) Anandamide: Some like it hot. Trends Pharmacol Sci 22:346–349. https://doi.org/10.1016/S0165-6147(00)01712-0

  73. Ho W-SV, Barrett DA, Randall MD (2008) “Entourage” effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. Br J Pharmacol 155:837–846. https://doi.org/10.1038/bjp.2008.324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Musella A, Fresegna D, Rizzo FR et al (2017) A novel crosstalk within the endocannabinoid system controls GABA transmission in the striatum. Sci Rep 7:7363. https://doi.org/10.1038/s41598-017-07519-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893. https://doi.org/10.1016/j.neuron.2008.01.029

    Article  CAS  PubMed  Google Scholar 

  76. Min R, Nevian T (2012) Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat Neurosci 15:746–753. https://doi.org/10.1038/nn.3075

    Article  CAS  PubMed  Google Scholar 

  77. Smith NA, Bekar LK, Nedergaard M (2020) Astrocytic endocannabinoids mediate hippocampal transient heterosynaptic depression. Neurochem Res 45:100–108. https://doi.org/10.1007/s11064-019-02834-0

    Article  CAS  PubMed  Google Scholar 

  78. Andersson MS, Hanse E (2011) Astrocyte-mediated short-term synaptic depression in the rat hippocampal CA1 area: two modes of decreasing release probability. BMC Neurosci 12:87. https://doi.org/10.1186/1471-2202-12-87

    Article  PubMed  PubMed Central  Google Scholar 

  79. Marsicano G, Lafenêtre P (2009) Roles of the endocannabinoid system in learning and memory. Curr Top Behav Neurosci 1:201–230. https://doi.org/10.1007/978-3-540-88955-7_8

    Article  CAS  PubMed  Google Scholar 

  80. Gallego-Landin I, García-Baos A, Castro-Zavala A, Valverde O (2021) Reviewing the role of the endocannabinoid system in the pathophysiology of depression. Front Pharmacol 12:1–21. https://doi.org/10.3389/fphar.2021.762738

    Article  CAS  Google Scholar 

  81. Koch M (2017) Cannabinoid receptor signaling in central regulation of feeding behavior: a mini-review. Front Neurosci 11:293. https://doi.org/10.3389/fnins.2017.00293

    Article  PubMed  PubMed Central  Google Scholar 

  82. Buisseret B, Alhouayek M, Guillemot-Legris O, Muccioli GG (2019) Endocannabinoid and prostanoid crosstalk in pain. Trends Mol Med 25:882–896. https://doi.org/10.1016/j.molmed.2019.04.009

    Article  CAS  PubMed  Google Scholar 

  83. Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16:9–29. https://doi.org/10.1038/s41582-019-0284-z

    Article  PubMed  Google Scholar 

  84. Navarrete F, García-Gutiérrez MS, Jurado-Barba R et al (2020) Endocannabinoid system components as potential biomarkers in psychiatry. Front Psych 11:1–30. https://doi.org/10.3389/fpsyt.2020.00315

    Article  Google Scholar 

  85. Hill MN, Eiland L, Lee TTY et al (2019) Early life stress alters the developmental trajectory of corticolimbic endocannabinoid signaling in male rats. Neuropharmacology 146:154–162. https://doi.org/10.1016/j.neuropharm.2018.11.036

    Article  CAS  PubMed  Google Scholar 

  86. Chiurchiù V, van der Stelt M, Centonze D, Maccarrone M (2018) The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: clues for other neuroinflammatory diseases. Prog Neurobiol 160:82–100. https://doi.org/10.1016/j.pneurobio.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  87. Busquets-Garcia A, Gomis-González M, Guegan T et al (2013) Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med 19:603–607. https://doi.org/10.1038/nm.3127

    Article  CAS  PubMed  Google Scholar 

  88. Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID (2020) Cannabidiol as a therapeutic target: evidence of its neuroprotective and neuromodulatory function in Parkinson’s disease. Front Pharmacol 11:595635. https://doi.org/10.3389/fphar.2020.595635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors were supported by Italian Ministry of Health (GR-2016-02361163 to AM; RF-2018-12366144 to DC), Ricerca corrente of IRCCS San Raffaele Roma, Ricerca corrente of IRCCS Neuromed, Italian Ministry of University and Research (PRIN 2017- cod. 2017K55HLC to DC), and FISM-Fondazione Italiana Sclerosi Multipla (cod. 2019/S/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Centonze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Musella, A., Centonze, D. (2023). Electrophysiology of Endocannabinoid Signaling. In: Maccarrone, M. (eds) Endocannabinoid Signaling. Methods in Molecular Biology, vol 2576. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2728-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2728-0_38

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2727-3

  • Online ISBN: 978-1-0716-2728-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics