Skip to main content

Advances in Regenerative Medicine and Biomaterials

  • Protocol
  • First Online:
Gene, Drug, and Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2575))

Abstract

The low regenerative potential of the human body hinders proper regeneration of dysfunctional or lost tissues and organs due to trauma, congenital defects, and diseases. Tissue or organ transplantation has hence been a major conventional option for replacing the diseased or dysfunctional body parts of the patients. In fact, a great number of patients on waiting lists would benefit tremendously if tissue and organs could be replaced with biomimetic spare parts on demand. Herein, regenerative medicine and advanced biomaterials strive to reach this distant goal. Tissue engineering aims to create new biological tissue or organ substitutes, and promote regeneration of damaged or diseased tissue and organs. This approach has been jointly evolving with the major advances in biomaterials, stem cells, and additive manufacturing technologies. In particular, three-dimensional (3D) bioprinting utilizes 3D printing to fabricate viable tissue-like structures (perhaps organs in the future) using bioinks composed of special hydrogels, cells, growth factors, and other bioactive contents. A third generation of multifunctional biomaterials could also show opportunities for building biomimetic scaffolds, upon which to regenerate stem cells in vivo. Besides, decellularization technology based on isolation of extracellular matrix of tissue and organs from their inhabiting cells is presented as an alternative to synthetic biomaterials. Today, the gained knowledge of functional microtissue engineering and biointerfaces, along with the remarkable advances in pluripotent stem cell technology, seems to be instrumental for the development of more realistic microphysiological 3D in vitro tissue models, which can be utilized for personalized disease modeling and drug development. This chapter will discuss the recent advances in the field of regenerative medicine and biomaterials, alongside challenges, limitations, and potentials of the current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elçin YM (2004) Stem cells and tissue engineering. In: Hasirci N, Hasirci V (eds) Biomaterials, vol 553. Springer, Boston, pp 301–316

    Chapter  Google Scholar 

  2. Elçin YM (2017) Organs-on-chips & 3D–bioprinting technologies for personalized medicine. Stem Cell Rev Rep 13(3):319–320

    Article  PubMed  Google Scholar 

  3. Atala A, Murphy S (2015) Regenerative medicine. JAMA 313(14):1413–1414

    Article  CAS  PubMed  Google Scholar 

  4. Oladapo BI, Zahedi SA, Adeoye AOM (2019) 3D printing of bone scaffolds with hybrid biomaterials. Compos Part B Eng 158:428–436

    Article  CAS  Google Scholar 

  5. Kwon SG, Kwon YW, Lee TW, Park GT, Kim JH (2018) Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater Res 22(1):1–8

    Article  Google Scholar 

  6. Loskill P, Huebsch N (2019) Engineering tissues from induced pluripotent stem cells. Tissue Eng Part A 25(9–10):707–710

    Article  PubMed  Google Scholar 

  7. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 4(1):1–15

    Article  CAS  Google Scholar 

  8. ClinicalTrials.gov (2020) https://clinicaltrials.gov. Accessed 17 Aug 2020

  9. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S, Fan J, Wang W, Deng L, Shi H, Li H, Hu Z, Zhang F, Gao J, Liu H, Li X, Zhao Y, Yin K, He X, Gao Z, Wang Y, Yang B, Jin R, Stambler I, Lim LW, Su H, Moskalev A, Cano A, Chakrabarti S, Min KJ, Ellison-Hughes G, Caruso C, Jin K, Zhao RC (2020) Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 11(2):216–228

    Article  PubMed  PubMed Central  Google Scholar 

  10. Öztürk S, Elçin AE, Elçin YM (2020) Mesenchymal stem cells for coronavirus (COVID-19)-induced pneumonia: revisiting the paracrine hypothesis with new hopes? Aging Dis 11(3):477–479

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  12. Elçin YM, Inanç B, Elçin AE (2014) Differentiation of human embryonic stem cells on periodontal ligament fibroblasts. In: Turksen K (ed) Human embryonic stem cell protocols, 3rd edn. Humana Press, New York, pp 223–235

    Chapter  Google Scholar 

  13. Inanç B, Elçin AE, Unsal E, Balos K, Parlar A, Elçin YM (2008) Differentiation of human embryonic stem cells on periodontal ligament fibroblasts in vitro. Artif Organs 32(2):100–109

    Article  PubMed  Google Scholar 

  14. Inanç B, Elcin AE, Elcin YM (2007) Effect of osteogenic induction on the in vitro differentiation of human embryonic stem cells cocultured with periodontal ligament fibroblasts. Artif Organs 31(11):792–800

    Article  PubMed  Google Scholar 

  15. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  16. Simonson OE, Domogatskaya A, Volchkov P, Rodin S (2015) The safety of human pluripotent stem cells in clinical treatment. Ann Med 47(5):370–380

    Article  PubMed  Google Scholar 

  17. Öztürk S, Elçin AE, Koca A, Elçin YM (2021) Therapeutic applications of stem cells and extracellular vesicles in emergency care: futuristic perspectives. Stem Cell Rev Rep. 17(2):390–410

    Google Scholar 

  18. Inanç B, Elçin YM (2011) Stem cells in tooth tissue regeneration—challenges and limitations. Stem Cell Rev Rep 7(3):683–692

    Article  PubMed  Google Scholar 

  19. Şeker Ş, Elçin AE, Elçin YM (2019) Autologous protein-based scaffold composed of platelet lysate and aminated hyaluronic acid. J Mater Sci Mater Med 30(127):1–15

    Google Scholar 

  20. Elcin YM, Dixit V, Gitnick G (1996) Controlled release of endothelial cell growth factor from chitosan-albumin microspheres and fibers for localized angiogenesis: in vitro and in vivo studies. Artif Cell Blood Sub 24(3):257–271

    Article  CAS  Google Scholar 

  21. Elcin AE, Elcin YM (2006) Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue Eng 12(4):959–968

    Article  CAS  PubMed  Google Scholar 

  22. Elçin YM, Dixit V, Gitnick G (2001) Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs 25(7):558–565

    Article  PubMed  Google Scholar 

  23. Vasita R, Katti DS (2006) Growth factor-delivery systems for tissue engineering: a materials perspective. Expert Rev Med Devices 3(1):29–47

    Article  CAS  PubMed  Google Scholar 

  24. Elcin YM (2002) Angiogenesis in tissue engineering. Technol Health Care 10(3–4):306–308

    Google Scholar 

  25. Linn T, Erb D, Schneider D, Kidszun A, Elçin AE, Bretzel RG, Elçin YM (2003) Polymers for induction of revascularization in the rat fascial flap: application of vascular endothelial growth factor and pancreatic islet cells. Cell Transplant 12(7):769–778

    Article  PubMed  Google Scholar 

  26. Demirdögen B, Elçin AE, Elçin YM (2010) Neovascularization by bFGF releasing hyaluronic acid–gelatin microspheres: in vitro and in vivo studies. Growth Factors 28(6):426–436

    Article  PubMed  Google Scholar 

  27. Koç A, Finkenzeller G, Elçin AE, Stark GB, Elçin YM (2014) Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: in vitro and in vivo studies. J Biomater Appl 29(5):748–760

    Article  PubMed  Google Scholar 

  28. Şeker Ş, Elçin AE, Elçin YM (2020) Macroporous elastic cryogels based on platelet lysate and oxidized dextran as tissue engineering scaffold: in vitro and in vivo evaluations. Mater Sci Eng C Mater Biol Appl 110(110703):1–11

    Google Scholar 

  29. Rodrigues AA, Lana JF, Luzo ÂCM, Santana MHA, Perez AGM, Lima-Silva DB, Belangero WD (2014) Platelet-rich plasma and tissue engineering. In: Lana JFSD, Santana MHA, Belangero WD, Luzo ACM (eds) Platelet-rich plasma. Springer, Berlin, Heidelberg, pp 139–151

    Chapter  Google Scholar 

  30. Bielecki TM, Gazdzik TS, Arendt J, Szczepanski T, Król W, Wielkoszynski T (2007) Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances: an in vitro study. J Bone Joint Surg Br 89(3):417–420

    Article  CAS  PubMed  Google Scholar 

  31. Moojen DJF, Everts PA, Schure RM et al (2008) Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus. J Orthop Res 26(3):404–410

    Article  PubMed  Google Scholar 

  32. Drago L, Bortolin M, Vassena C, Taschieri S, Del Fabbro M (2013) Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol 13(47):1–5

    Google Scholar 

  33. Zhang W, Guo Y, Kuss M, Shi W, Aldrich AL, Untrauer J, Kielian T, Duan B (2019) Platelet-rich plasma for the treatment of tissue infection: preparation and clinical evaluation. Tissue Eng Part B Rev 25(3):225–236

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kusindarta DL, Wihadmadyatami H (2018) The role of extracellular matrix in tissue regeneration. In: Kaoud HAE (ed) Tissue regeneration. IntechOpen, London, pp 65–73

    Google Scholar 

  35. Hussey GS, Dziki JL, Badylak SF (2018) Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 3(7):159–173

    Article  CAS  Google Scholar 

  36. Londono R, Badylak SF (2015) Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng 43(3):577–592

    Article  PubMed  Google Scholar 

  37. Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017:1–13

    Article  Google Scholar 

  38. Zhang Y, Xu Y, Liu Y, Li D, Yin Z, Huo Y, Jiang G, Yang Y, Wang Z, Li Y, Lu F, Liu Y, Duan L, Zhou G (2019) Porous decellularized trachea scaffold prepared by a laser micropore technique. J Mech Behav Biomed Mater 90:96–103

    Article  PubMed  Google Scholar 

  39. Simsa R, Padma AM, Heher P, Hellström M, Teuschl A, Jenndahl L, Bergh N, Fogelstrand P (2018) Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One 13(12-e0209269):1–19

    Google Scholar 

  40. Seo Y, Jung Y, Kim SH (2018) Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater 67:270–281

    Article  CAS  PubMed  Google Scholar 

  41. Uhl FE, Zhang F, Pouliot RA, Uriarte JJ, Rolandsson Enes S, Han X, Ouyang Y, Xia K, Westergren-Thorsson G, Malmström A, Hallgren O, Linhardt RJ, Weiss DJ (2020) Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomater 102:231–246

    Article  CAS  PubMed  Google Scholar 

  42. Bianco JER, Rosa RG, Congrains-Castillo A, Joazeiro PP, Waldman SD, Weber JF, Saad STO (2019) Characterization of a novel decellularized bone marrow scaffold as an inductive environment for hematopoietic stem cells. Biomater Sci 7(4):1516–1528

    Article  CAS  PubMed  Google Scholar 

  43. Lin HJ, Wang TJ, Li TW, Chang YY, Sheu MT, Huang YY, Liu DZ (2019) Development of decellularized cornea by organic acid treatment for corneal regeneration. Tissue Eng Part A 25(7–8):652–662

    Article  CAS  PubMed  Google Scholar 

  44. Shimoda H, Yagi H, Higashi H, Tajima K, Kuroda K, Abe Y, Kitago M, Shinoda M, Kitagawa Y (2019) Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci Rep 9(12543):1–11

    Google Scholar 

  45. Sobreiro-Almeida R, Fonseca DR, Neves NM (2019) Extracellular matrix electrospun membranes for mimicking natural renal filtration barriers. Mater Sci Eng C Mater Biol Appl 103(109866):1–12

    Google Scholar 

  46. Parmaksiz M, Elcin AE, Elcin YM (2017) Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. J Tissue Eng Regen Med 11(6):1754–1765

    Article  CAS  PubMed  Google Scholar 

  47. Xing H, Lee H, Luo L, Kyriakides TR (2019) Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 42(107421):1–13

    Google Scholar 

  48. Ibsirlioglu T, Elçin AE, Elçin YM (2020) Decellularized biological scaffold and stem cells from autologous human adipose tissue for cartilage tissue engineering. Methods 171:97–107

    Article  CAS  PubMed  Google Scholar 

  49. Parmaksiz M, Elçin AE, Elçin YM (2020) Decellularized cell culture ECMs act as cell differentiation inducers. Stem Cell Rev Rep 16:569–584

    Article  CAS  PubMed  Google Scholar 

  50. Öztürk S, Ayanoğlu FB, Parmaksiz M, Elçin AE, Elçin YM (2020) Clinical and surgical aspects of medical materials’ biocompatibility. In: Mozafari M (ed) Handbook of biomaterials compatibility, Woodhead publishing series in biomaterials. Elsevier, Kidlington, pp 219–250. https://doi.org/10.1016/B978-0-08-102967-1.00012-8

    Chapter  Google Scholar 

  51. Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626

    Article  PubMed  PubMed Central  Google Scholar 

  52. Durkut S, Elçin YM (2017) Synthesis and characterization of thermosensitive poly (N-vinylcaprolactam)-g-collagen. Artif Cell Nanomed B 45(8):1665–1674

    Article  CAS  Google Scholar 

  53. Lalegül-Ülker Ö, Vurat MT, Elçin AE, Elçin YM (2019) Magnetic silk fibroin composite nanofibers for biomedical applications: fabrication and evaluation of the chemical, thermal, mechanical, and in vitro biological properties. J Appl Polym Sci 136(48040):1–11

    Google Scholar 

  54. Nalvuran H, Elçin AE, Elçin YM (2018) Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications. Int J Biol Macromol 114:77–84

    Article  CAS  PubMed  Google Scholar 

  55. Nazari B, Kazemi M, Kamyab A, Nazari B, Ebrahimi-Barough S, Hadjighassem M, Norouzi-Javidan A, Ai A, Ahmadi A, Ai J (2020) Fibrin hydrogel as a scaffold for differentiation of induced pluripotent stem cells into oligodendrocytes. J Biomed Mater Res B 108(1):192–200

    Article  CAS  Google Scholar 

  56. Lalegül-Ülker Ö, Şeker Ş, Elçin AE, Elçin YM (2019) Encapsulation of bone marrow-MSCs in PRP-derived fibrin microbeads and preliminary evaluation in a volumetric muscle loss injury rat model: modular muscle tissue engineering. Artif Cell Nanomed B 47(1):10–21

    Article  Google Scholar 

  57. Larsen MT, Kuhlmann M, Hvam ML, Howard KA (2016) Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 4(3):1–12

    Google Scholar 

  58. Li PS, Lee IL, Yu WL, Sun JS, Jane WN, Shen HH (2014) A novel albumin-based tissue scaffold for autogenic tissue engineering applications. Sci Rep 4(5600):1–7

    Google Scholar 

  59. Durkut S, Elçin YM (2020) Synthesis and characterization of thermosensitive poly (N-vinyl caprolactam)-grafted-aminated alginate hydrogels. Macromol Chem Phys 221(2–1900412):1–11

    Google Scholar 

  60. Durkut S, Elçin AE, Elçin YM (2015) In vitro evaluation of encapsulated primary rat hepatocytes pre-and post-cryopreservation at −80°C and in liquid nitrogen. Artif Cell Nanomed B 43(1):50–61

    Article  CAS  Google Scholar 

  61. Koç-Demir A, Elçin AE, Elçin YM (2018) Osteogenic differentiation of encapsulated rat mesenchymal stem cells inside a rotating microgravity bioreactor: in vitro and in vivo evaluation. Cytotechnology 70(5):1375–1388

    Article  PubMed  PubMed Central  Google Scholar 

  62. Koç A, Elçin AE, Elçin YM (2016) Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold. Artif Cell Nanomed B 44(6):1440–1447

    Article  Google Scholar 

  63. Inanç B, Elçin AE, Koç A, Baloş K, Parlar A, Elçin YM (2007) Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan–hydroxyapatite microspheres. J Biomed Mater Res A 82(4):917–926

    Article  PubMed  Google Scholar 

  64. Burnouf T, Goubran HA, Chen TM, Ou KL, El-Ekiaby M, Radosevic M (2013) Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev 27(2):77–89

    Article  CAS  PubMed  Google Scholar 

  65. Keswani D, Pandey RK (2013) Revascularization of an immature tooth with a necrotic pulp using platelet-rich fibrin: a case report. Int Endod J 46(11):1096–1104

    Article  CAS  PubMed  Google Scholar 

  66. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B (2006) Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(3):e37–e44

    Article  PubMed  Google Scholar 

  67. Arora S, Agnihotri N (2017) Platelet derived biomaterials for therapeutic use: review of technical aspects. Indian J Hematol Blood Transfus 33(2):159–167

    Article  PubMed  Google Scholar 

  68. Costa-Almeida R, Franco AR, Pesqueira T, Oliveira MB, Babo PS, Leonor IB, Mano JF, Reis RL, Gomes ME (2018) The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomater 68:29–40

    Article  CAS  PubMed  Google Scholar 

  69. Yang Y, Zhao J, Zhao Y, Wen L, Yuan X, Fan Y (2008) Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching. J Appl Polym Sci 109(2):1232–1241

    Article  CAS  Google Scholar 

  70. Inanc B, Arslan YE, Seker S, Elçin AE, Elçin YM (2009) Periodontal ligament cellular structures engineered with electrospun poly (DL-lactide-co-glycolide) nanofibrous membrane scaffolds. J Biomed Mater Res A 90(1):186–195

    Article  PubMed  Google Scholar 

  71. Elcin YM, Elcin AE, Pappas GD (2003) Functional and morphological characteristics of bovine adrenal chromaffin cells on macroporous poly (D, L-lactide-co-glycolide) scaffolds. Tissue Eng 9(5):1047–1056

    Article  CAS  PubMed  Google Scholar 

  72. Kowalczewski CJ, Saul JM (2018) Biomaterials for the delivery of growth factors and other therapeutic agents in tissue engineering approaches to bone regeneration. Front Pharmacol 9(513):1–15

    Google Scholar 

  73. Baykan E, Koc A, Elcin AE, Elcin YM (2014) Evaluation of a biomimetic poly (ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: in vitro and in vivo studies. Biointerphases 9(2–029011):1–11

    Google Scholar 

  74. Şeker Ş, Elçin YM (2014) Bioanalytical applications of piezoelectric sensors. In: Iniewski K, Selimovic S (eds) Nanopatterning and nanoscale devices for biological applications. CRC Press, Boca Raton, pp 259–285

    Google Scholar 

  75. Jacob J, More N, Kalia K, Kapusetti G (2018) Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm Regen 38(2):1–11

    Google Scholar 

  76. Shuai C, Liu G, Yang Y, Yang W, He C, Wang G, Liu Z, Qi F, Peng S (2020) Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids Surf B Biointerfaces 185(110587):1–10

    Google Scholar 

  77. Parmaksiz M, Elçin AE, Elçin YM (2019) Decellularized bovine small intestinal submucosa-PCL/hydroxyapatite-based multilayer composite scaffold for hard tissue repair. Mater Sci Eng C Mater Biol Appl 94:788–797

    Article  CAS  PubMed  Google Scholar 

  78. Yuan B, Raucci MG, Fan Y, Zhu X, Yang X, Zhang X, Santin M, Ambrosio L (2018) Injectable strontium-doped hydroxyapatite integrated with phosphoserine-tethered poly (epsilon-lysine) dendrons for osteoporotic bone defect repair. J Mater Chem B 6(47):7974–7984

    Article  CAS  PubMed  Google Scholar 

  79. Vurat MT, Elcin AE, Elcin YM (2018) Osteogenic composite nanocoating based on nanohydroxyapatite, strontium ranelate and polycaprolactone for titanium implants. Trans Nonferrous Met Soc China 28(9):1763–1773

    Article  CAS  Google Scholar 

  80. O’brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95

    Article  Google Scholar 

  81. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov KK, Bazaka K (2017) Metallic biomaterials: current challenges and opportunities. Materials 10(8–884):1–33

    Google Scholar 

  82. Ni J, Ling H, Zhang S, Wang Z, Peng Z, Benyshek C, Zan R, Miri AK, Li Z, Zhang X, Lee J, Lee KJ, Kim HJ, Tebon P, Hoffman T, Dokmeci MR, Ashammakhi N, Li X, Khademhosseini A (2019) Three-dimensional printing of metals for biomedical applications. Mater Today Bio 3(100024):1–18

    Google Scholar 

  83. Honigmann P, Sharma N, Okolo B, Popp U, Msallem B, Thieringer FM (2018) Patient-specific surgical implants made of 3D printed PEEK: material, technology, and scope of surgical application. Biomed Res Int 2018:1–8

    Article  Google Scholar 

  84. Wong KC, Scheinemann P (2018) Additive manufactured metallic implants for orthopaedic applications. Sci China Mater 61(4):440–454

    Article  CAS  Google Scholar 

  85. Damiati S, Kompella UB, Damiati SA, Kodzius R (2018) Microfluidic devices for drug delivery systems and drug screening. Genes 9(2–103):1–24

    CAS  Google Scholar 

  86. Tang M, Wang G, Kong SK, Ho HP (2016) A review of biomedical centrifugal microfluidic platforms. Micromachines 7(2–26):1–29

    Google Scholar 

  87. Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16(9):554–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ravetto A, Hoefer IE, den Toonder JM, Bouten CV (2016) A membrane-based microfluidic device for mechano-chemical cell manipulation. Biomed Microdevices 18(31):1–11

    CAS  Google Scholar 

  89. Ghaemmaghami AM, Hancock MJ, Harrington H, Kaji H, Khademhosseini A (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17(3–4):173–181

    Article  CAS  PubMed  Google Scholar 

  90. Perestrelo AR, Águas AC, Rainer A, Forte G (2015) Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors 15(12):31142–31170

    Article  PubMed  PubMed Central  Google Scholar 

  91. Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X (2018) Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 128:3–28

    Article  CAS  PubMed  Google Scholar 

  92. Shiroma LS, Piazzetta MH, Duarte-Junior GF, Coltro WK, Carrilho E, Gobbi AL, Lima RS (2016) Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices. Sci Rep 6(26032):1–12

    Google Scholar 

  93. Carugo D, Lee JY, Pora A, Browning RJ, Capretto L, Nastruzzi C, Stride E (2016) Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique. Biomed Microdevices 18(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sharma H, Nguyen D, Chen A, Lew V, Khine M (2011) Unconventional low-cost fabrication and patterning techniques for point of care diagnostics. Ann Biomed Eng 39(4):1313–1327

    Article  PubMed  Google Scholar 

  95. Namdee K, Thompson AJ, Charoenphol P, Eniola-Adefeso O (2013) Margination propensity of vascular-targeted spheres from blood flow in a microfluidic model of human microvessels. Langmuir 29(8):2530–2535

    Article  CAS  PubMed  Google Scholar 

  96. Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chou DB, Frismantas V, Milton Y, David R, Pop-Damkov P, Ferguson D, MacDonald A, Vargel Bölükbaşı Ö, Joyce CE, Moreira Teixeira LS, Rech A, Jiang A, Calamari E, Jalili-Firoozinezhad S, Furlong BA, O’Sullivan LR, Ng CF, Choe Y, Marquez S, Myers KC, Weinberg OK, Hasserjian RP, Novak R, Levy O, Prantil-Baun R, Novina CD, Shimamura A, Ewart L, Ingber DE (2020) On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. Nat Biomed Eng 4(4):394–406

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhang B, Gao L, Ma L, Luo Y, Yang H, Cui Z (2019) 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering 5(4):777–794

    Article  CAS  Google Scholar 

  100. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  101. Ma J, Wang Y, Liu J (2018) Bioprinting of 3D tissues/organs combined with microfluidics. RSC Adv 8(39):21712–21727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vurat MT, Ergun C, Elçin AE, Elçin YM (2020) 3D bioprinting of tissue models with customized bioinks. In: Chun HJ, Reis RL, Motta A, Khang G (eds) Bioinspired biomaterials. Springer, Singapore, pp 67–84

    Chapter  Google Scholar 

  103. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 1(100008):1–23

    Google Scholar 

  104. Panwar A, Tan LP (2016) Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules 21(6–685):1–26

    Google Scholar 

  105. Kim BS, Lee JS, Gao G, Cho DW (2017) Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9(2):025034

    Article  PubMed  Google Scholar 

  106. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452):482–487

    Article  CAS  PubMed  Google Scholar 

  107. Lee H, Chae S, Kim JY, Han W, Kim J, Choi Y, Cho DW (2019) Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication 11(2):025001

    Article  CAS  PubMed  Google Scholar 

  108. Lipskas J, Deep K, Yao W (2019) Robotic-assisted 3D bio-printing for repairing bone and cartilage defects through a minimally invasive approach. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  109. Antich C, de Vicente J, Jiménez G, Chocarro C, Carrillo E, Montañez E, Gálvez-Martín P, Marchal JA (2020) Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater 106:114–123

    Article  CAS  PubMed  Google Scholar 

  110. Vurat MT, Şeker Ş, Lalegül-Ülker Ö, Parmaksiz M, Elçin AE, Elçin YM (2022) Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes Dis. 9(4):1008–1023

    Google Scholar 

  111. Freeman S, Ramos R, Alexis Chando P, Zhou L, Reeser K, Jin S, Soman P, Ye K (2019) A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Acta Biomater 95:152–164

    Article  CAS  PubMed  Google Scholar 

  112. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226(119536):1–32

    Google Scholar 

  113. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F (2016) 4D bioprinting for biomedical applications. Trends Biotechnol 34(9):746–756

    Article  CAS  PubMed  Google Scholar 

  114. Wan Z, Zhang P, Liu Y, Lv L, Zhou Y (2020) Four-dimensional bioprinting: current developments and applications in bone tissue engineering. Acta Biomater 101:26–42

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

YME is the founder and shareholder of Biovalda Health Technologies, Inc. (Ankara, Turkey). The authors have patent applications in relation to regenerative biomaterials. The authors are alone responsible for the content and writing of the chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Şeker, Ş., Elçin, A.E., Elçin, Y.M. (2023). Advances in Regenerative Medicine and Biomaterials. In: Pereira, G.C. (eds) Gene, Drug, and Tissue Engineering. Methods in Molecular Biology, vol 2575. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2716-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2716-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2715-0

  • Online ISBN: 978-1-0716-2716-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics