Skip to main content

A Primer for Circadian Metabolic Profile Analysis Using Multi-platform Metabolomics

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Neuromethods ((NM,volume 186))

  • 701 Accesses

Abstract

Metabolomics is defined as the large-scale analysis of metabolites within a biological system. While small molecules, such as melatonin and cortisol, have been known to fluctuate in a circadian fashion for some time, recent studies have used metabolomics to expand the known cycling metabolome. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are two primary analytical platforms readily utilized for metabolomics analyses. Here, we describe a set of metabolomics approaches for analysis of both polar metabolites and lipids, focusing on considerations for circadian studies. These include liquid chromatography and desorption electrospray ionization coupled to MS, NMR protocols, and complementary real-time bioluminescence tracing using firefly luciferase as a reporter of circadian gene expression. These methods can be used to study the impact of both central and peripheral clocks on metabolism from various biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson CH, Gonzalez FJ (2012) Challenges and opportunities of metabolomics. J Cell Physiol 227(8):2975–2981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gallois A, Mefford J, Ko A, Vaysse A, Julienne H, Ala-Korpela M, Laakso M, Zaitlen N, Pajukanta P, Aschard H (2019) A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context. Nat Commun 10(1):4788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sharma M, Palacios-Bois J, Schwartz G, Iskandar H, Thakur M, Quirion R, Nair NPV (1989) Circadian rhythms of melatonin and cortisol in aging. Biol Psychiatry 25(3):305–319

    Article  CAS  PubMed  Google Scholar 

  4. Reinke H, Asher G (2019) Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol 20:227

    Article  CAS  PubMed  Google Scholar 

  5. Dyar KA, Eckel-Mahan KL (2017) Circadian metabolomics in time and space. Front Neurosci 11:369

    Article  PubMed  PubMed Central  Google Scholar 

  6. Malik DM, Paschos GK, Sehgal A, Weljie AM (2020) Circadian and sleep metabolomics across species. J Mol Biol 432(12):3578–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu X, Locasale JW (2017) Metabolomics: a primer. Trends Biochem Sci 42(4):274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Segers K, Declerck S, Mangelings D, Heyden YV, Eeckhaut AV (2019) Analytical techniques for metabolomic studies: a review. Bioanalysis 11(24):2297–2318

    Article  CAS  PubMed  Google Scholar 

  9. Rhoades SD, Weljie AM (2016) Comprehensive optimization of LC-MS metabolomics methods using design of experiments (COLMeD). Metabolomics 12(12):1–12

    Article  CAS  Google Scholar 

  10. Krishnaiah SY, Wu G, Altman BJ, Growe J, Rhoades SD, Coldren F, Venkataraman A, Olarerin-George AO, Francey LJ, Mukherjee S, Girish S, Selby CP, Cal S, Er U, Sianati B, Sengupta A, Anafi RC, Kavakli IH, Sancar A, Baur JA, Dang CV, Hogenesch JB, Weljie AM (2017) Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metab 25(4):961–974.e964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sengupta A, Rhoades SD, Kim EJ, Nayak S, Grant GR, Meerlo P, Weljie AM (2017) Sleep restriction induced energy, methylation and lipogenesis metabolic switches in rat liver. Int J Biochem Cell Biol 93:129–135

    Article  CAS  PubMed  Google Scholar 

  12. Rhoades SD, Nayak K, Zhang SL, Sehgal A, Weljie AM (2018) Circadian- and light-driven metabolic rhythms in Drosophila melanogaster. J Biol Rhythm 33(2):126–136

    Article  CAS  Google Scholar 

  13. Iles RA, Hind AJ, Chalmers RA (1985) Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin Chem 31(11):1795–1801

    Article  CAS  PubMed  Google Scholar 

  14. Rinaldi PL (1998) A handbook of nuclear magnetic resonance, ray freeman, 2nd edn. Addison Wesley Longman, Harlow

    Google Scholar 

  15. Raja G, Jung Y, Jung SH, Kim T-J (2020) 1H-NMR-based metabolomics for cancer targeting and metabolic engineering –a review. Process Biochem 99:112–122

    Article  CAS  Google Scholar 

  16. Clendinen CS, Lee-McMullen B, Williams CM, Stupp GS, Vandenborne K, Hahn DA, Walter GA, Edison AS (2014) 13C NMR metabolomics: applications at natural abundance. Anal Chem 86(18):9242–9250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhinderwala F, Evans P, Jones K, Laws BR, Smith TG, Morton M, Powers R (2020) Phosphorus NMR and its application to metabolomics. Anal Chem 92(14):9536–9545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emwas A-H, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS (2019) NMR spectroscopy for metabolomics research. Metabolites 9(7):123

    Article  CAS  PubMed Central  Google Scholar 

  19. Markley JL, Brüschweiler R, Edison AS, Eghbalnia HR, Powers R, Raftery D, Wishart DS (2017) The future of NMR-based metabolomics. Curr Opin Biotechnol 43:34–40

    Article  CAS  PubMed  Google Scholar 

  20. Seyler L, Kujawinski EB, Azua-Bustos A, Lee MD, Marlow J, Perl SM, Cleaves Ii HJ (2020) Metabolomics as an emerging tool in the search for astrobiologically relevant biomarkers. Astrobiology 20(10):1251–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clendinen CS, Monge ME, Fernández FM (2017) Ambient mass spectrometry in metabolomics. Analyst 142(17):3101–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feider CL, Woody S, Ledet S, Zhang J, Sebastian K, Breen MT, Eberlin LS (2019) Molecular imaging of endometriosis tissues using desorption electrospray ionization mass spectrometry. Sci Rep 9(1):15690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Banerjee S, Zare RN, Tibshirani RJ, Kunder CA, Nolley R, Fan R, Brooks JD, Sonn GA (2017) Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids. Proc Natl Acad Sci 114(13):3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mirnezami R, Veselkov K, Strittmatter N, Goldin RD, Kinross JM, Stebbing J, Holmes E, Darzi AW, Nicholson JK, Takats Z (2016) Spatially resolved profiling of colorectal cancer lipid biochemistry via DESI imaging mass spectrometry to reveal morphology-dependent alterations in fatty acid metabolism. J Clin Oncol 34(15_suppl):e15104

    Article  Google Scholar 

  25. Hänel L, Kwiatkowski M, Heikaus L, Schlüter H (2019) Mass spectrometry-based intraoperative tumor diagnostics. Future Sci OA 5(3):FSO373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. O'Shea K, Misra BB (2020) Software tools, databases and resources in metabolomics: updates from 2018 to 2019. Metabolomics 16(3):36

    Article  CAS  PubMed  Google Scholar 

  27. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TWM, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3(3):211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baggs JE, Price TS, DiTacchio L, Panda S, FitzGerald GA, Hogenesch JB (2009) Network features of the mammalian circadian clock. PLoS Biol 7(3):e1000052

    Article  PubMed Central  CAS  Google Scholar 

  29. Ramanathan C, Xu H, Khan SK, Shen Y, Gitis PJ, Welsh DK, Hogenesch JB, Liu AC (2014) Cell type-specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models. PLoS Genet 10(4):e1004244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408

    Article  CAS  PubMed  Google Scholar 

  31. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288(5466):682–685

    Article  CAS  PubMed  Google Scholar 

  32. Kaneko M, Cahill GM (2005) Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol 3(2):e34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yamaguchi S, Kobayashi M, Mitsui S, Ishida Y, van der Horst GTJ, Suzuki M, Shibata S, Okamura H (2001) View of a mouse clock gene ticking. Nature 409(6821):684–684

    Article  CAS  PubMed  Google Scholar 

  34. Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38(3):312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37(2):187–192

    Article  CAS  PubMed  Google Scholar 

  36. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ III, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129(3):605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramanathan C, Khan SK, Kathale ND, Xu H, Liu AC (2012) Monitoring cell-autonomous circadian clock rhythms of gene expression using luciferase bioluminescence reporters. J Vis Exp 67:e4234

    Google Scholar 

  38. Nagoshi E, Brown SA, Dibner C, Kornmann B, Schibler U (2005) Circadian gene expression in cultured cells. In: Young MW (ed) Methods in enzymology, vol 393. Academic Press, pp 543–557

    Google Scholar 

  39. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

  40. Malik DM, Rhoades S, Weljie A (2018) Extraction and analysis of pan-metabolome polar metabolites by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Bio Protoc 8(3):e2715

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, Human Serum Metabolome C (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083

    Article  CAS  PubMed  Google Scholar 

  42. Fan S, Kind T, Cajka T, Hazen SL, Tang WHW, Kaddurah-Daouk R, Irvin MR, Arnett DK, Barupal DK, Fiehn O (2019) Systematic error removal using random Forest for normalizing large-scale untargeted Lipidomics data. Anal Chem 91(5):3590–3596

    Article  CAS  PubMed  Google Scholar 

  43. Dieterle F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR Metabonomics. Anal Chem 78(13):4281–4290

    Article  CAS  PubMed  Google Scholar 

  44. Salek RM, Steinbeck C, Viant MR, Goodacre R, Dunn WB (2013) The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience 2(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617

    Article  CAS  PubMed  Google Scholar 

  46. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205

    Article  CAS  PubMed  Google Scholar 

  47. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 29(2):97–101

    Article  CAS  Google Scholar 

  48. Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC international chemical identifier. J Chem 7(1):23

    Article  CAS  Google Scholar 

  49. Fahy E, Subramaniam S (2020) RefMet: a reference nomenclature for metabolomics. Nat Methods 17(12):1173–1174

    Article  CAS  PubMed  Google Scholar 

  50. Pang Z, Chong J, Li S, Xia J (2020) MetaboAnalystR 3.0: toward an optimized workflow for global metabolomics. Metabolites 10(5):186

    Article  CAS  PubMed Central  Google Scholar 

  51. Montenegro-Burke JR, Guijas C, Siuzdak G (2020) METLIN: a tandem mass spectral library of standards. Methods Mol Biol 2104:149–163

    Article  CAS  PubMed  Google Scholar 

  52. Xue J, Guijas C, Benton HP, Warth B, Siuzdak G (2020) METLIN MS(2) molecular standards database: a broad chemical and biological resource. Nat Methods 17(10):953–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garikapati V, Karnati S, Bhandari DR, Baumgart-Vogt E, Spengler B (2019) High-resolution atmospheric-pressure MALDI mass spectrometry imaging workflow for lipidomic analysis of late fetal mouse lungs. Sci Rep 9(1):3192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Bodzon-Kulakowska A, Drabik A, Ner J, Kotlinska JH, Suder P (2014) Desorption electrospray ionisation (DESI) for beginners – how to adjust settings for tissue imaging. Rapid Commun Mass Spectrom 28(1):1–9

    Article  CAS  PubMed  Google Scholar 

  55. Green FM, Stokes P, Hopley C, Seah MP, Gilmore IS, O’Connor G (2009) Developing repeatable measurements for reliable analysis of molecules at surfaces using desorption electrospray ionization. Anal Chem 81(6):2286–2293

    Article  CAS  PubMed  Google Scholar 

  56. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cooks RG (2011) Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim Biophys Acta 1811(11):946–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmieder P (2006) Multidimensional NMR spectroscopy. In: Encyclopedic reference of genomics and proteomics in molecular medicine. Springer, Berlin Heidelberg, pp 1204–1208

    Chapter  Google Scholar 

  58. Mckay RT (2011) How the 1D-NOESY suppresses solvent signal in metabonomics NMR spectroscopy: an examination of the pulse sequence components and evolution. Concepts Magn Reson Part A 38A(5):197–220

    Article  CAS  Google Scholar 

  59. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94(3):630–638

    Article  CAS  Google Scholar 

  60. Tilgner M, Vater TS, Habbel P, Cheng LL (2019) High-resolution magic angle spinning (HRMAS) NMR methods in metabolomics. In: Gowda GAN, Raftery D (eds) NMR-based metabolomics: methods and protocols. Springer, New York, pp 49–67

    Chapter  Google Scholar 

  61. Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703

    Article  CAS  PubMed  Google Scholar 

  62. Tsang-Lin H, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J Magn Reson 112(2):275–279

    Article  Google Scholar 

  63. Sengupta A, Weljie AM (2019) NMR spectroscopy–based metabolic profiling of biospecimens. Curr Protoc Protein Sci 98(1):e98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Emwas A-H, Saccenti E, Gao X, McKay RT, Dos Santos VAPM, Roy R, Wishart DS (2018) Recommended strategies for spectral processing and post-processing of 1D (1)H-NMR data of biofluids with a particular focus on urine. Metabolomics 14(3):31–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78(13):4430–4442

    Article  CAS  PubMed  Google Scholar 

  66. Welsh DK, Imaizumi T, Kay SA (2005) Real-time reporting of circadian-regulated gene expression by luciferase imaging in plants and mammalian cells. In: Young MW (ed) Methods in enzymology, vol 393. Academic Press, pp 269–288

    Google Scholar 

  67. Yamazaki S, Takahashi JS (2005) Real-time luminescence reporting of circadian gene expression in mammals. In: Young MW (ed) Methods in enzymology, vol 393. Academic Press, pp 288–301

    Google Scholar 

  68. Altman Brian J, Hsieh Annie L, Sengupta A, Krishnanaiah Saikumari Y, Stine Zachary E, Walton Zandra E, Gouw Arvin M, Venkataraman A, Li B, Goraksha-Hicks P, Diskin Sharon J, Bellovin David I, Simon MC, Rathmell Jeffrey C, Lazar Mitchell A, Maris John M, Felsher Dean W, Hogenesch John B, Weljie Aalim M, Dang Chi V (2015) MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab 22(6):1009–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sengupta A, Krishnaiah SY, Rhoades S, Growe J, Slaff B, Venkataraman A, Olarerin-George AO, Van Dang C, Hogenesch JB, Weljie AM (2016) Deciphering the duality of clock and growth metabolism in a cell autonomous system using NMR profiling of the secretome. Metabolites 6(3):23

    Article  PubMed Central  CAS  Google Scholar 

  70. Sapcariu SC, Kanashova T, Weindl D, Ghelfi J, Dittmar G, Hiller K (2014) Simultaneous extraction of proteins and metabolites from cells in culture. MethodsX 1:74–80

    Article  PubMed  PubMed Central  Google Scholar 

  71. Spalding JL, Naser FJ, Mahieu NG, Johnson SL, Patti GJ (2018) Trace phosphate improves ZIC-pHILIC peak shape, sensitivity, and coverage for untargeted metabolomics. J Proteome Res 17(10):3537–3546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Phinney KW, Ballihaut G, Bedner M, Benford BS, Camara JE, Christopher SJ, Davis WC, Dodder NG, Eppe G, Lang BE, Long SE, Lowenthal MS, McGaw EA, Murphy KE, Nelson BC, Prendergast JL, Reiner JL, Rimmer CA, Sander LC, Schantz MM, Sharpless KE, Sniegoski LT, Tai SSC, Thomas JB, Vetter TW, Welch MJ, Wise SA, Wood LJ, Guthrie WF, Hagwood CR, Leigh SD, Yen JH, Zhang N-F, Chaudhary-Webb M, Chen H, Fazili Z, LaVoie DJ, McCoy LF, Momin SS, Paladugula N, Pendergrast EC, Pfeiffer CM, Powers CD, Rabinowitz D, Rybak ME, Schleicher RL, Toombs BMH, Xu M, Zhang M, Castle AL (2013) Development of a standard reference material for metabolomics research. Anal Chem 85(24):11732–11738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, Ahonen L, Alnouti Y, Armando AM, Asara JM, Bamba T, Barr JR, Bergquist J, Borchers CH, Brandsma J, Breitkopf SB, Cajka T, Cazenave-Gassiot A, Checa A, Cinel MA, Colas RA, Cremers S, Dennis EA, Evans JE, Fauland A, Fiehn O, Gardner MS, Garrett TJ, Gotlinger KH, Han J, Huang Y, Neo AH, Hyötyläinen T, Izumi Y, Jiang H, Jiang H, Jiang J, Kachman M, Kiyonami R, Klavins K, Klose C, Köfeler HC, Kolmert J, Koal T, Koster G, Kuklenyik Z, Kurland IJ, Leadley M, Lin K, Maddipati KR, McDougall D, Meikle PJ, Mellett NA, Monnin C, Moseley MA, Nandakumar R, Oresic M, Patterson R, Peake D, Pierce JS, Post M, Postle AD, Pugh R, Qiu Y, Quehenberger O, Ramrup P, Rees J, Rembiesa B, Reynaud D, Roth MR, Sales S, Schuhmann K, Schwartzman ML, Serhan CN, Shevchenko A, Somerville SE, St John-Williams L, Surma MA, Takeda H, Thakare R, Thompson JW, Torta F, Triebl A, Trötzmüller M, Ubhayasekera SJK, Vuckovic D, Weir JM, Welti R, Wenk MR, Wheelock CE, Yao L, Yuan M, Zhao XH, Zhou S (2017) Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-metabolites in frozen human plasma. J Lipid Res 58(12):2275–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (award numbers R01DK120757, R01NR018836, P01CA165997, and R01HL142981), National Institute of Environmental Health Sciences (award number T32ES01985, supporting L.N.B), and Pharmacology T32 Training Grant (award number T32 GM008076, supporting D.M.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aalim M. Weljie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tan, A.W., Malik, D.M., Bottalico, L.N., Sengupta, A., Weljie, A.M. (2022). A Primer for Circadian Metabolic Profile Analysis Using Multi-platform Metabolomics. In: Hirota, T., Hatori, M., Panda, S. (eds) Circadian Clocks. Neuromethods, vol 186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2577-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2577-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2576-7

  • Online ISBN: 978-1-0716-2577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics