Skip to main content

Bioluminescent Monitoring of Circadian Rhythms in Isolated Mesophyll Cells of Arabidopsis at Single-Cell Level

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2525))

  • 1253 Accesses

Abstract

A bioluminescent monitoring system is used to detect the circadian rhythms of individual plant cells. Transgenic Arabidopsis carrying the firefly luciferase (FLuc) gene driven by a circadian-regulated promoter is used as the material for protoplast isolation. The bioluminescence of these protoplasts in the culture medium is separately captured using a highly sensitive camera system. The time-series data of the bioluminescent imaging reveals the circadian rhythms of these isolated cells, enabling the native properties of the cellular circadian clocks to become elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Creux N, Harmer S (2019) Circadian rhythms in plants. Cold Spring Harb Perspec Biol 11:a034611

    Article  CAS  Google Scholar 

  2. Michael TP, Mockler TC, Breton G et al (2008) Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4:e14

    Article  Google Scholar 

  3. Nohales MA, Kay SA (2016) Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol 23:1061–1069

    Article  CAS  Google Scholar 

  4. Welsh DK, Imaizumi T, Kay SA (2005) Real-time reporting of circadian-regulated gene expression by luciferase imaging in plants and mammalian cells. Methods Enzymol 393:269–288

    Article  CAS  Google Scholar 

  5. Millar AJ, Short SR, Chua NH et al (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Millar AJ, Short SR, Hiratsuka K et al (1992) Firefly luciferase as a reporter of regulated gene expression in higher plants. Plant Mol Biol Rep 10:324–337

    Article  CAS  Google Scholar 

  7. Millar AJ, Carré IA, Strayer CA et al (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267:1161–1163

    Article  CAS  Google Scholar 

  8. Somers DE, Schultz TF, Milnamow M et al (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101:319–329

    Article  CAS  Google Scholar 

  9. Wenden B, Toner DLK, Hodge SK et al (2012) Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf. Proc Natl Acad Sci U S A 109:6757–6762

    Article  CAS  Google Scholar 

  10. Fukuda H, Ukai K, Oyama T (2012) Self-arrangement of cellular circadian rhythms through phase-resetting in plant roots. Phys Rev E 86:041917

    Article  Google Scholar 

  11. Fukuda H, Nakamichi N, Hisatsune M et al (2007) Synchronization of plant circadian oscillators with a phase delay effect of the vein network. Phys Rev Lett 99:098102

    Article  Google Scholar 

  12. Muranaka T, Oyama T (2016) Heterogeneity of cellular circadian clocks in intact plants and its correction under light-dark cycles. Sci Adv 2:e1600500

    Article  Google Scholar 

  13. Greenwood M, Domijan M, Gould PD et al (2019) Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana. PLoS Biol 17:e3000407

    Article  CAS  Google Scholar 

  14. Thain SC, Hall A, Millar AJ (2000) Functional independence of circadian clocks that regulate plant gene expression. Curr Biol 10:951–956

    Article  CAS  Google Scholar 

  15. Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154:611–621

    Article  CAS  Google Scholar 

  16. Takahashi N, Hirata Y, Aihara K et al (2015) A hierarchical multi-oscillator network orchestrates the Arabidopsis circadian system. Cell 163:148–159

    Article  CAS  Google Scholar 

  17. Hansen LL, van Ooijen G (2016) Rapid analysis of circadian phenotypes in Arabidopsis protoplasts transfected with a luminescent clock reporter. J Vis Exp 115:e54586

    Google Scholar 

  18. Nakamura S, Oyama T (2018) Long-term monitoring of bioluminescence circadian rhythms of cells in a transgenic Arabidopsis mesophyll protoplast culture. Plant Biotech 35:291–295

    Article  CAS  Google Scholar 

  19. Nakamura S, Oyama T (2022) Adaptive diversification in the cellular circadian behavior of Arabidopsis leaf- and root-derived cells. Plant Cell Physiol 63:421–432

    Google Scholar 

  20. Nakamichi N, Matsushika A, Yamashino T et al (2003) Cell autonomous circadian waves of the APRR1/TOC1 quintet in an established cell line of Arabidopsis thaliana. Plant Cell Physiol 44:360–365

    Article  CAS  Google Scholar 

  21. Nakamichi N, Ito S, Oyama T et al (2004) Characterization of plant circadian rhythms by employing Arabidopsis cultured cells with bioluminescence reporters. Plant Cell Physiol 45:57–67

    Article  CAS  Google Scholar 

  22. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  Google Scholar 

  23. Muranaka T, Oyama T (2020) Application of single-cell bioluminescent imaging to monitor circadian rhythms of individual plant cells. In: Ripp S (ed) Bioluminescent imaging: methods and protocols. Springer US, New York, NY, pp 231–242Methods in molecular biology

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokitaka Oyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakamura, S., Oyama, T. (2022). Bioluminescent Monitoring of Circadian Rhythms in Isolated Mesophyll Cells of Arabidopsis at Single-Cell Level. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2525. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2473-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2473-9_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2472-2

  • Online ISBN: 978-1-0716-2473-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics