Skip to main content

In Vivo Bioluminescence Analyses of Circadian Rhythms in Arabidopsis thaliana Using a Microplate Luminometer

  • Protocol
  • First Online:
Circadian Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2482))

Abstract

Our understanding of the circadian clock function in plants has been markedly assisted by studies with the model species Arabidopsis thaliana. Molecular and genetics approaches have delivered a comprehensive view of the transcriptional regulatory networks underlying the Arabidopsis circadian system. The use of the luciferase as a reporter allowed the precise in vivo determination of circadian periods, phases, and amplitudes of clock promoter activities with unprecedented temporal resolution. An increasing repertoire of fine-tuned luciferases together with additional applications such as translational fusions or bioluminescence molecular complementation assays have considerably expanded our view of circadian protein expression and activity, far beyond transcriptional regulation. Further applications have focused on the in vivo simultaneous examination of rhythms in different parts of the plant. The use of intact versus excised plant organs has also provided a glimpse on both the organ-specific and autonomy of the clocks and the importance of long distance communication for circadian function. This chapter provides a basic protocol for in vivo high-throughput monitoring of circadian rhythms in Arabidopsis seedlings using bioluminescent reporters and a microplate luminometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715

    Article  CAS  Google Scholar 

  2. McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    Article  CAS  Google Scholar 

  3. Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22:R648–R657

    Article  CAS  Google Scholar 

  4. McClung CR (2013) Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 24:430–436

    Article  Google Scholar 

  5. Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    Article  CAS  Google Scholar 

  6. Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41:1002–1012

    Article  CAS  Google Scholar 

  7. Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farré EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402

    Article  CAS  Google Scholar 

  8. Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AAR (2013) Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 502:689–692

    Article  CAS  Google Scholar 

  9. Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T (2014) Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol 55:958–976

    Article  CAS  Google Scholar 

  10. Chen WW, Takahashi N, Hirata Y, Ronald J, Porco S, Davis SJ, Nusinow DA, Kay SA, Mas P (2020) A mobile ELF4 delivers circadian temperature information from shoots to roots. Nat Plants 6:416–426

    Article  Google Scholar 

  11. Shaw SL, Ehrhardt DW (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64:351–375

    Article  CAS  Google Scholar 

  12. Kirkpatrick A, Xu T, Ripp S, Sayler G, Close D (2019) Biotechnological advances in luciferase enzymes. In: Bioluminescence - analytical applications and basic biology. IntechOpen, Rijeka, Croatia, p 13

    Google Scholar 

  13. Uehara TN, Mizutani Y, Kuwata K, Hirota T, Sato A, Mizoi J, Takao S, Matsuo H, Suzuki T, Ito S et al (2019) Casein kinase 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 116:11528–11536

    Article  CAS  Google Scholar 

  14. Millar AJ, Short SR, Chua NH, Kay SA (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  15. JoVE Science Education Database (2020) Basic methods in cellular and molecular biology. Molecular cloning. JoVE, Cambridge, MA. https://www.jove.com/science-education/5074/molecular-cloning. Accessed 6 May 2020

    Google Scholar 

  16. Urquiza-García U, Millar AJ (2019) Expanding the bioluminescent reporter toolkit for plant science with NanoLUC. Plant Methods 15:68

    Article  Google Scholar 

  17. Hall A, Brown P (2007) Monitoring circadian rhythms in Arabidopsis thaliana using luciferase reporter genes. In: Circadian rhythms. Humana Press, Totowa, NJ, pp 143–152

    Google Scholar 

  18. Mattanovich D, Rüker F, da Cämara Machado A, Laimer M, Regner F, Steinkeliner H, Himmler G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by eletroporation. Nucleic Acids Res 17:6747–6747

    Article  CAS  Google Scholar 

  19. Logemann E, Birkenbihl RP, Ülker B, Somssich IE (2006) An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods 2(1):16

    Article  Google Scholar 

  20. Kim H, Kim Y, Yeom M, Lim J, Nam HG (2016) Age-associated circadian period changes in Arabidopsis leaves. J Exp Bot 67:2665–2673

    Article  CAS  Google Scholar 

  21. Takahashi N, Hirata Y, Aihara K, Mas P (2015) A hierarchical multi-oscillator network orchestrates the Arabidopsis circadian system. Cell 163:148–159

    Article  CAS  Google Scholar 

  22. Moore A, Zielinski T, Millar AJ (2014) Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure. In: Staiger D (ed) . Springer, New York, pp 13–44

    Google Scholar 

  23. Ogura R, Matsuo N, Wako N, Tanaka T, Ono S, Hiratsuka K (2005) Multi-color luciferases as reporters for monitoring transient gene expression in higher plants. Plant Biotechnol 22:151–155

    Article  CAS  Google Scholar 

  24. Endo M, Shimizu H, Nohales MA, Araki T, Kay SA (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 515:419–422

    Article  CAS  Google Scholar 

  25. Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z et al (2014) LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell 26:2843–2857

    Article  CAS  Google Scholar 

  26. Kanesaka Y, Okada M, Ito S, Oyama T (2019) Monitoring single-cell bioluminescence of Arabidopsis leaves to quantitatively evaluate the efficiency of a transiently introduced CRISPR/Cas9 system targeting the circadian clock gene ELF3. Plant Biotechnol 36:187–193

    Article  CAS  Google Scholar 

  27. Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154:611–621

    Article  CAS  Google Scholar 

  28. Muranaka T, Oyama T (2016) Heterogeneity of cellular circadian clocks in intact plants and its correction under light-dark cycles. Sci Adv 2:e1600500

    Article  Google Scholar 

  29. Okada M, Muranaka T, Ito S, Oyama T (2017) Synchrony of plant cellular circadian clocks with heterogeneous properties under light/dark cycles. Sci Rep 7:317

    Article  Google Scholar 

  30. Lindsey BE, Rivero L, Calhoun CS, Grotewold E, Brkljacic J (2017) Standardized method for high-throughput sterilization of Arabidopsis seeds. J Vis Exp 2017:1–7

    Google Scholar 

  31. Wenden B, Toner DLK, Hodge SK, Grima R, Millar AJ (2012) Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf. Proc Natl Acad Sci U S A 109:6757–6762

    Article  CAS  Google Scholar 

  32. Fukuda H, Ukai K, Oyama T (2012) Self-arrangement of cellular circadian rhythms through phase-resetting in plant roots. Phys Rev E 86:041917

    Article  Google Scholar 

  33. Muranaka T, Kubota S, Oyama T (2013) A single-cell bioluminescence imaging system for monitoring cellular gene expression in a plant body. Plant Cell Physiol 54:2085–2093

    Article  CAS  Google Scholar 

  34. England CG, Ehlerding EB, Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27:1175–1187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Mas laboratory is funded with a research grant (PID2019-106653GB-I00) from the MCIN/AEI/10.13039/501100011033, from the Ramon Areces Foundation and from the Generalitat de Catalunya (AGAUR). P.M. laboratory also acknowledges financial support from the CERCA Program/Generalitat de Catalunya and by the Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa Program for Centers of Excellence in R & D” 2016–2019 (CEX2019-000902-S). M.O. is funded with a “Severo Ochoa” Internationalization Postdoctoral Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma Mas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Okada, M., Mas, P. (2022). In Vivo Bioluminescence Analyses of Circadian Rhythms in Arabidopsis thaliana Using a Microplate Luminometer. In: Solanas, G., Welz, P.S. (eds) Circadian Regulation. Methods in Molecular Biology, vol 2482. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2249-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2249-0_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2248-3

  • Online ISBN: 978-1-0716-2249-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics