Skip to main content

In Vivo Assessment of Protein-Protein Interactions Using BRET Assay

  • Protocol
  • First Online:
Bioluminescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2525))

Abstract

Proteins play an important part in almost all life activities and across all organisms. Proteins occasionally act on their own but rather fulfill most of their biological tasks by cooperating with other proteins or ligand molecules. The bioluminescence resonance energy transfer (BRET) assay serves to measure dynamic events such as protein-protein or protein-ligand interactions in vitro or in-vivo. With several inherent attributes such as rapid and fairly sensitive ratio-metric measurements, assessment of interactions irrespective of protein location within the cellular compartment, cost-effectiveness consenting to high-throughput screening compatibility, makes BRET a popular genetic reporter-based assay system for protein-protein interaction (PPI) studies. Based on the Förster principle, BRET allows to judge if the proximity has been achieved between the interacting partners. In recent years, the BRET application has emerged as a significantly versatile assay format by using multiple detection devices such as a plate reader or in-vivo optical imaging platform, or even a bioluminescence microscope has expanded its scope for advancing PPI studies. Beyond the scope of quantitative measurement of PPIs, molecular optical imaging applications based on BRET assay have expanded the scope for screening pharmacological compounds by unifying live cell and in-vivo animal-/plant-based experiments using the same platform technology. In this chapter, we have given intricate methodological details for performing in-vitro and in-vivo BRET experiments, primarily by using donor/acceptor reporter protein combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stumpf MPH, Thorne T, De Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105:6959–6964. https://doi.org/10.1073/pnas.0708078105

    Article  PubMed  PubMed Central  Google Scholar 

  2. Massoud TF, Paulmurugan R, De A et al (2007) Reporter gene imaging of protein–protein interactions in living subjects. Curr Opin Biotechnol 18:31. https://doi.org/10.1016/J.COPBIO.2007.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De A, Gambhir SS (2005) Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer. FASEB J 19:2017–2019. https://doi.org/10.1096/fj.05-4628fje

    Article  CAS  PubMed  Google Scholar 

  4. De A, Loening AM, Gambhir SS (2007) An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects. Cancer Res 67:7175–7183. https://doi.org/10.1158/0008-5472.CAN-06-4623

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dimri S, Basu S, De A (2016) Use of BRET to study protein-protein interactions in vitro and in vivo. In: Methods in molecular biology. Humana Press, pp 57–78

    Google Scholar 

  6. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96:151–156. https://doi.org/10.1073/pnas.96.1.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pfleger KDG, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174. https://doi.org/10.1038/nmeth841

    Article  CAS  PubMed  Google Scholar 

  8. Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci U S A 58:719–726. https://doi.org/10.1073/pnas.58.2.719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi H, Picard LP, Schönegge AM, Bouvier M (2019) Bioluminescence resonance energy transfer–based imaging of protein–protein interactions in living cells. Nat Protoc 14:1084–1107. https://doi.org/10.1038/s41596-019-0129-7

    Article  CAS  PubMed  Google Scholar 

  10. Wu PG, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    Article  CAS  Google Scholar 

  11. Jones GA, Bradshaw DS (2019) Resonance energy transfer: from fundamental theory to recent applications introduction and the early years of ret. Front Phys 7:100. https://doi.org/10.3389/fphy.2019.00100

    Article  Google Scholar 

  12. De A, Jasani A, Arora R, Gambhir SS (2013) Evolution of BRET biosensors from live cell to tissue-scale in vivo imaging. Front Endocrinol (Lausanne) 4:131. https://doi.org/10.3389/fendo.2013.00131

    Article  Google Scholar 

  13. Blanquart C, Francois M, Charrier C et al (2011) Pharmacological characterization of histone deacetylase inhibitor and tumor cell-growth inhibition properties of new Benzofuranone compounds. Curr Cancer Drug Targets 11:919–928. https://doi.org/10.2174/156800911797264761

    Article  CAS  PubMed  Google Scholar 

  14. Dimri S, Arora R, Jasani A, De A (2019) Dynamic monitoring of STAT3 activation in live cells using a novel STAT3 Phospho-BRET sensor. Am J Nucl Med Mol Imaging 9:321–334

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bishnu A, Mehrotra M, Dhadve A et al (2021) Predicting response to platinum and non-platinum drugs through bioluminescence resonance energy transfer (BRET) based bio-molecular interactions in platinum resistant epithelial ovarian cancer. Transl Oncol 14:101193. https://doi.org/10.1016/j.tranon.2021.101193

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schaub FX, Reza MS, Flaveny CA et al (2015) Fluorophore-NanoLuc BRET reporters enable sensitive in vivo optical imaging and flow cytometry for monitoring tumorigenesis. Cancer Res 75:5023–5033. https://doi.org/10.1158/0008-5472.CAN-14-3538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hwang E, Song J, Zhang J (2019) Integration of nanomaterials and bioluminescence resonance energy transfer techniques for sensing biomolecules. Biosens 9:42. https://doi.org/10.3390/BIOS9010042

    Article  CAS  Google Scholar 

  18. Stoddart LA, Johnstone EKM, Wheal AJ et al (2015) Application of BRET to monitor ligand binding to GPCRs. Nat Methods 127:661–663. https://doi.org/10.1038/nmeth.3398

    Article  CAS  Google Scholar 

  19. Yu X, Wen K, Wang Z et al (2016) General bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots. Anal Chem 88:3512–3520. https://doi.org/10.1021/ACS.ANALCHEM.5B03581

    Article  CAS  PubMed  Google Scholar 

  20. Tsuboi S, Jin T (2017) Bioluminescence resonance energy transfer (BRET)-coupled Annexin V-functionalized quantum dots for near-infrared optical detection of apoptotic cells. Chembiochem 18:2231–2235. https://doi.org/10.1002/CBIC.201700486

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Chen L, Dotzert M et al (2017) Nanostructured biosensor using bioluminescence quenching technique for glucose detection. J Nanobiotechnol 151(15):1–9. https://doi.org/10.1186/S12951-017-0294-1

    Article  Google Scholar 

  22. Takahashi R, Yasuda T, Ohmuro-Matsuyama Y, Ueda H (2021) BRET Q-Body: A Ratiometric quench-based bioluminescent Immunosensor made of luciferase-dye-antibody fusion with enhanced response. Anal Chem 93:7571–7578. https://doi.org/10.1021/acs.analchem.0c05217

    Article  CAS  PubMed  Google Scholar 

  23. Soave M, Stoddart LA, Brown A et al (2016) Use of a new proximity assay (NanoBRET) to investigate the ligand-binding characteristics of three fluorescent ligands to the human β 1 -adrenoceptor expressed in HEK-293 cells. Pharmacol Res Perspect 4:e00250. https://doi.org/10.1002/prp2.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dionne P, Caron M, Labonté A et al (2001) Bret2. In: Luminescence biotechnology. CRC Press, pp 539–555

    Chapter  Google Scholar 

  25. De A, Ray P, Loening AM, Gambhir SS (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 23:2702–2709. https://doi.org/10.1096/fj.08-118919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mezzanotte L, Blankevoort V, Löwik CWGM, Kaijzel EL (2014) A novel luciferase fusion protein for highly sensitive optical imaging: from single-cell analysis to in vivo whole-body bioluminescence imaging. Anal Bioanal Chem 406:5727–5734. https://doi.org/10.1007/s00216-014-7917-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Auld DS, Narahari J, Ho P et al (2018) Characterization and use of TurboLuc luciferase as a reporter for high-throughput assays. Biochemistry 57:4700–4706. https://doi.org/10.1021/acs.biochem.8b00290

    Article  CAS  PubMed  Google Scholar 

  28. Mezzanotte L, Iljas JD, Que I et al (2017) Optimized longitudinal monitoring of stem cell grafts in mouse brain using a novel bioluminescent/near infrared fluorescent fusion reporter. Cell Transplant 26:1878–1889. https://doi.org/10.1177/0963689717739718

    Article  PubMed  Google Scholar 

  29. Saito K, Chang Y-F, Horikawa K et al (2012) Luminescent proteins for high-speed single-cell and whole-body imaging. Nat Commun 3:1262. https://doi.org/10.1038/ncomms2248

    Article  CAS  PubMed  Google Scholar 

  30. Loeb LA, Harris CC (2008) Advances in chemical carcinogenesis: a historical review and prospective. Cancer Res 68:6863–6872. https://doi.org/10.1158/0008-5472.CAN-08-2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levi J, De A, Cheng Z, Gambhir SS (2007) Bisdeoxycoelenterazine derivatives for improvement of bioluminescence resonance energy transfer assays. J Am Chem Soc 129:11900–11901. https://doi.org/10.1021/JA073936H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adams ST, Miller SC (2014) Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr Opin Chem Biol 21:112–120

    Article  CAS  Google Scholar 

  33. Zambito G, Chawda C, Mezzanotte L (2021) Emerging tools for bioluminescence imaging. Curr Opin Chem Biol 63:86–94

    Article  CAS  Google Scholar 

  34. McCullock TW, MacLean DM, Kammermeier PJ (2020) Comparing the performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for mNeonGreen. PLoS One 15:e0219886. https://doi.org/10.1371/journal.pone.0219886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li G, Huang Z, Zhang C et al (2016) Construction of a linker library with widely controllable flexibility for fusion protein design. Appl Microbiol Biotechnol 100:215–225. https://doi.org/10.1007/s00253-015-6985-3

    Article  CAS  PubMed  Google Scholar 

  36. Van Rosmalen M, Krom M, Merkx M (2017) Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. Biochemistry 56:6565–6574. https://doi.org/10.1021/acs.biochem.7b00902

    Article  CAS  PubMed  Google Scholar 

  37. Kubale V, Drinovec L, Vrecl M (2012) Quantitative assessment of seven transmembrane receptors (7TMRs) oligomerization by bioluminescence resonance energy transfer (BRET) technology. In: Bioluminescence – recent advances in oceanic measurements and laboratory applications. InTech

    Google Scholar 

  38. Cicero L, Fazzotta S, Palumbo VD et al (2018) Anesthesia protocols in laboratory animals used for scientific purposes. Acta Biomed 89:337–342

    CAS  PubMed  Google Scholar 

  39. Paulmurugan R, Gambhir SS (2005) Novel fusion protein approach for efficient high-throughput screening of small molecule–mediating protein-protein interactions in cells and living animals. Cancer Res 65:7413. https://doi.org/10.1158/0008-5472.CAN-05-0588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rathod M, Mal A, De A (2018) Reporter-based BRET sensors for measuring biological functions in vivo. In: Methods in molecular biology. Humana Press, pp 51–74

    Google Scholar 

  41. Dragulescu-Andrasi A, Chan CT, De A et al (2011) Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proc Natl Acad Sci U S A 108:12060–12065. https://doi.org/10.1073/pnas.1100923108

    Article  PubMed  PubMed Central  Google Scholar 

  42. McMannus C, Vasquez K, Peterson JD (2018) Vascular imaging probes for oncology and inflammation. PerkinElmer Inc. application note

    Google Scholar 

  43. Zhao H, Doyle TC, Coquoz O et al (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):41210. https://doi.org/10.1117/1.2032388

    Article  CAS  PubMed  Google Scholar 

  44. Calabro K, Curtis A, Galarneau J-R et al (2011) Gender variations in the optical properties of skin in murine animal models. J Biomed Opt 16(1):011008. https://doi.org/10.1117/1.3525565

    Article  PubMed  Google Scholar 

  45. Sihuai, Sun Xiaobing, Yang Yao, Wang Xihui, Shen (2016) In Vivo Analysis of Protein–Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects. International Journal of Molecular Sciences 17(10):1704. https://doi.org/10.3390/ijms17101704

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mujawar, A., De, A. (2022). In Vivo Assessment of Protein-Protein Interactions Using BRET Assay. In: Kim, SB. (eds) Bioluminescence. Methods in Molecular Biology, vol 2525. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2473-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2473-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2472-2

  • Online ISBN: 978-1-0716-2473-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics