Skip to main content

Eye Tracking Application to Understand the Visual Control of Locomotion

  • Protocol
  • First Online:
Eye Tracking

Part of the book series: Neuromethods ((NM,volume 183))

  • 842 Accesses

Abstract

Visual information is crucial for safe locomotion because it allows individuals to adjust their stepping patterns to deal with environmental demands. Deficits in the ability to visually sample the environment expose walkers to an increased risk of falling, which have motivated researchers to investigate the visual control of locomotion. Portable eye tracking technologies allow researchers to quantify eye movements and determine how, when and what individuals look at during locomotion. However, appropriate methodological approaches are required to understand the complex link between eye movements and locomotion. This book chapter explores methodological aspects required to assess the visual control of locomotion. To offer readers examples of how we applied eye tracking technologies to investigate the role of visual information during locomotor tasks, we revisit two previous studies published by our group involving older adults and patients with Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vitório R, Gobbi LT, Lirani-Silva E, Moraes R, Almeida QJ (2016) Synchrony of gaze and stepping patterns in people with Parkinson’s disease. Behav Brain Res 307:159–164. https://doi.org/10.1016/j.bbr.2016.04.010

    Article  PubMed  Google Scholar 

  2. Lord SR, Ward JA, Williams P, Anstey KJ (1994) Physiological factors associated with falls in older community-dwelling women. J Am Geriatr Soc 42(10):1110–1117. https://doi.org/10.1111/j.1532-5415.1994.tb06218.x

    Article  CAS  PubMed  Google Scholar 

  3. Ivers RQ, Cumming RG, Mitchell P, Attebo K (1998) Visual impairment and falls in older adults: the Blue Mountains eye study. J Am Geriatr Soc 46(1):58–64. https://doi.org/10.1111/j.1532-5415.1998.tb01014.x

    Article  CAS  PubMed  Google Scholar 

  4. Lord SR, Clark RD, Webster IW (1991) Visual acuity and contrast sensitivity in relation to falls in an elderly population. Age Ageing 20(3):175–181. https://doi.org/10.1093/ageing/20.3.175

    Article  CAS  PubMed  Google Scholar 

  5. Lord SR, Dayhew J (2001) Visual risk factors for falls in older people. J Am Geriatr Soc 49(5):508–515. https://doi.org/10.1046/j.1532-5415.2001.49107.x

    Article  CAS  PubMed  Google Scholar 

  6. Moraca GAG, Beretta VS, Dos Santos PCR, Nóbrega-Sousa P, Orcioli-Silva D, Vitório R, Gobbi LTB (2021) Center of pressure responses to unpredictable external perturbations indicate low accuracy in predicting fall risk in people with Parkinson’s disease. Eur J Neurosci 53(8):2901–2911. https://doi.org/10.1111/ejn.15143

    Article  PubMed  Google Scholar 

  7. Rubenstein LZ, Josephson KR (2002) The epidemiology of falls and syncope. Clin Geriatr Med 18(2):141–158. https://doi.org/10.1016/s0749-0690(02)00002-2

    Article  PubMed  Google Scholar 

  8. Chapman GJ, Hollands MA (2006) Evidence for a link between changes to gaze behaviour and risk of falling in older adults during adaptive locomotion. Gait Posture 24(3):288–294. https://doi.org/10.1016/j.gaitpost.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  9. Chapman GJ, Hollands MA (2007) Evidence that older adult fallers prioritise the planning of future stepping actions over the accurate execution of ongoing steps during complex locomotor tasks. Gait Posture 26(1):59–67. https://doi.org/10.1016/j.gaitpost.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  10. Marigold DS, Patla AE (2007) Gaze fixation patterns for negotiating complex ground terrain. Neuroscience 144(1):302–313. https://doi.org/10.1016/j.neuroscience.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  11. Matthis JS, Yates JL, Hayhoe MM (2018) Gaze and the control of foot placement when walking in natural terrain. Curr Biol 28(8):1224–1233.e1225. https://doi.org/10.1016/j.cub.2018.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patla AE, Vickers JN (1997) Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport 8(17):3661–3665. https://doi.org/10.1097/00001756-199712010-00002

    Article  CAS  PubMed  Google Scholar 

  13. Tilley BC, LaPelle NR, Goetz CG, Stebbins GT, Force M-UT (2014) Using cognitive pretesting in scale development for Parkinson’s disease: the Movement Disorder Society unified Parkinson’s disease rating scale (MDS-UPDRS) example. J Parkinsons Dis 4(3):395–404. https://doi.org/10.3233/JPD-130310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patla AE (1997) Understanding the roles of vision in the control of human locomotion. Gait Posture 5(1):54–69. https://doi.org/10.1016/S0966-6362(96)01109-5

    Article  Google Scholar 

  15. Marigold DS (2008) Role of peripheral visual cues in online visual guidance of locomotion. Exerc Sport Sci Rev 36(3):145–151. https://doi.org/10.1097/JES.0b013e31817bff72

    Article  PubMed  Google Scholar 

  16. Vitório R, Lirani-Silva E, Pieruccini-Faria F, Moraes R, Gobbi LT, Almeida QJ (2014) Visual cues and gait improvement in Parkinson’s disease: which piece of information is really important? Neuroscience 277:273–280. https://doi.org/10.1016/j.neuroscience.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  17. Srivastava A, Ahmad OF, Pacia CP, Hallett M, Lungu C (2018) The relationship between saccades and locomotion. J Mov Disord 11(3):93–106. https://doi.org/10.14802/jmd.18018

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stuart S, Galna B, Lord S, Rochester L, Godfrey A (2014) Quantifying saccades while walking: validity of a novel velocity-based algorithm for mobile eye tracking. Annu Int Conf IEEE Eng Med Biol Soc 2014:5739–5742. https://doi.org/10.1109/embc.2014.6944931

    Article  PubMed  Google Scholar 

  19. Stuart S, Alcock L, Galna B, Lord S, Rochester L (2014) The measurement of visual sampling during real-world activity in Parkinson’s disease and healthy controls: a structured literature review. J Neurosci Methods 222:175–188. https://doi.org/10.1016/j.jneumeth.2013.11.018

    Article  PubMed  Google Scholar 

  20. Stuart S, Hunt D, Nell J, Godfrey A, Hausdorff JM, Rochester L, Alcock L (2018) Do you see what I see? Mobile eye-tracker contextual analysis and inter-rater reliability. Med Biol Eng Comput 56(2):289–296. https://doi.org/10.1007/s11517-017-1669-z

    Article  CAS  PubMed  Google Scholar 

  21. Freedman EG (2008) Coordination of the eyes and head during visual orienting. Exp Brain Res 190(4):369–387. https://doi.org/10.1007/s00221-008-1504-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cognolato M, Atzori M, Müller H (2018) Head-mounted eye gaze tracking devices: an overview of modern devices and recent advances. J Rehabil Assist Technol Eng 5:2055668318773991. https://doi.org/10.1177/2055668318773991

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hollands MA, Marple-Horvat DE, Henkes S, Rowan AK (1995) Human eye movements during visually guided stepping. J Mot Behav 27(2):155–163. https://doi.org/10.1080/00222895.1995.9941707

    Article  PubMed  Google Scholar 

  24. Moraes R, Lewis MA, Patla AE (2004) Strategies and determinants for selection of alternate foot placement during human locomotion: influence of spatial and temporal constraints. Exp Brain Res 159(1):1–13. https://doi.org/10.1007/s00221-004-1888-z

    Article  PubMed  Google Scholar 

  25. Hollands MA, Marple-Horvat DE (2001) Coordination of eye and leg movements during visually guided stepping. J Mot Behav 33(2):205–216. https://doi.org/10.1080/00222890109603151

    Article  CAS  PubMed  Google Scholar 

  26. Hausdorff JM (2005) Gait variability: methods, modeling and meaning. J Neuroeng Rehabil 2:19. https://doi.org/10.1186/1743-0003-2-19

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rubenstein LZ, Josephson KR (2006) Falls and their prevention in elderly people: what does the evidence show? Med Clin North Am 90(5):807–824. https://doi.org/10.1016/j.mcna.2006.05.013

    Article  PubMed  Google Scholar 

  28. Conceição NRD, Nóbrega de Sousa P, Pereira MP, Gobbi LTB, Vitório R (2019) Utility of center of pressure measures during obstacle crossing in prediction of fall risk in people with Parkinson’s disease. Hum Mov Sci 66:1–8. https://doi.org/10.1016/j.humov.2019.03.010

    Article  PubMed  Google Scholar 

  29. Allen NE, Schwarzel AK, Canning CG (2013) Recurrent falls in Parkinson’s disease: a systematic review. Parkinsons Dis 2013:906274. https://doi.org/10.1155/2013/906274

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stegemöller EL, Buckley TA, Pitsikoulis C, Barthelemy E, Roemmich R, Hass CJ (2012) Postural instability and gait impairment during obstacle crossing in Parkinson’s disease. Arch Phys Med Rehabil 93(4):703–709. https://doi.org/10.1016/j.apmr.2011.11.004

    Article  PubMed  Google Scholar 

  31. Vitório R, Pieruccini-Faria F, Stella F, Gobbi S, Gobbi LT (2010) Effects of obstacle height on obstacle crossing in mild Parkinson’s disease. Gait Posture 31(1):143–146. https://doi.org/10.1016/j.gaitpost.2009.09.011

    Article  PubMed  Google Scholar 

  32. Vitório R, Lirani-Silva E, Baptista AM, Barbieri FA, dos Santos PC, Teixeira-Arroyo C, Gobbi LT (2014) Disease severity affects obstacle crossing in people with Parkinson’s disease. Gait Posture 40(1):266–269. https://doi.org/10.1016/j.gaitpost.2014.03.003

    Article  PubMed  Google Scholar 

  33. Stolze H, Klebe S, Zechlin C, Baecker C, Friege L, Deuschl G (2004) Falls in frequent neurological diseases--prevalence, risk factors and aetiology. J Neurol 251(1):79–84. https://doi.org/10.1007/s00415-004-0276-8

    Article  PubMed  Google Scholar 

  34. Almeida QJ, Frank JS, Roy EA, Jenkins ME, Spaulding S, Patla AE, Jog MS (2005) An evaluation of sensorimotor integration during locomotion toward a target in Parkinson’s disease. Neuroscience 134(1):283–293. https://doi.org/10.1016/j.neuroscience.2005.02.050

    Article  CAS  PubMed  Google Scholar 

  35. Konczak J, Corcos DM, Horak F, Poizner H, Shapiro M, Tuite P, Volkmann J, Maschke M (2009) Proprioception and motor control in Parkinson’s disease. J Mot Behav 41(6):543–552. https://doi.org/10.3200/35-09-002

    Article  PubMed  Google Scholar 

  36. Lee EY, Cowan N, Vogel EK, Rolan T, Valle-Inclán F, Hackley SA (2010) Visual working memory deficits in patients with Parkinson’s disease are due to both reduced storage capacity and impaired ability to filter out irrelevant information. Brain J Neurol 133(9):2677–2689. https://doi.org/10.1093/brain/awq197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Vitorio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lirani-Silva, E., Vitorio, R. (2022). Eye Tracking Application to Understand the Visual Control of Locomotion. In: Stuart, S. (eds) Eye Tracking. Neuromethods, vol 183. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2391-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2391-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2390-9

  • Online ISBN: 978-1-0716-2391-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics