Skip to main content

Agrobacterium-Mediated in Planta Transformation in Periwinkle

  • Protocol
  • First Online:
Catharanthus roseus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2505))

Abstract

Madagascar periwinkle (Catharanthus roseus, family Apocynaceae) is a reservoir of more than 130 monoterpene indole alkaloids (MIAs) including the famous anti-neoplastic dimeric MIAs vinblastine and vincristine, and anti-hypertensive monomeric MIAs ajmalicine and serpentine. Understanding the biosynthetic steps and regulatory factors leading to the formation of MIAs is crucial for rational engineering to achieve targeted enhancement of different MIAs. Due to its highly recalcitrant nature, C. roseus is considered genetically non-tractable for transformation at the whole-plant level. Though few reports have demonstrated tissue culture-mediated regeneration and transformation of C. roseus at whole-plant level recently, the efficiency and reproducibility of these protocols have been a major challenge. To overcome this, we have developed a tissue-culture-independent Agrobacterium-mediated in planta transformation method in C. roseus. Using this method, we were able to efficiently generate stable transgenic plants without relying on the cumbersome methods of tissue-culture regeneration and transformation. Moreover, the transformed plants obtained through this in planta method exhibited stability in subsequent generations. Our method is useful not only for the elucidation of biosynthetic and regulatory steps involved in MIA formation through transgenic plant approach but also for metabolic engineering at the whole-plant level in C. roseus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kellner F, Kim J, Clavijo BJ, Hamilton JP, Childs KL, Vaillancourt B, Cepela J, Habermann M, Steuernagel B, Clissold L, McLay K (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82(4):680–692

    Article  CAS  Google Scholar 

  2. Zhao L, Sander GW, Shanks JV (2013) Perspectives of the metabolic engineering of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Adv Biochem Eng Biotechnol 134:23–54

    CAS  PubMed  Google Scholar 

  3. Zhu X, Zeng X, Sun C, Chen S (2014) Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front Med 8(3):285–293

    Article  Google Scholar 

  4. Sottomayor M, De Pinto MC, Salema R, DiCosmo F, Pedreoo MA, Ros Barcelo A (1996) The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of α-31, 41-anhydrovinblastine in Catharanthus roseus (L.) G. Don Leaves. Plant Cell Environ 19(6):761–767

    Article  CAS  Google Scholar 

  5. Costa MM, Hilliou F, Duarte P, Pereira LG, Almeida I, Leech M, Memelink J, Barceló AR, Sottomayor M (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol 146(2):403–417

    Article  CAS  Google Scholar 

  6. Noble RL (1990) The discovery of the vinca alkaloids — chemotherapeutic agents against cancer. Biochem Cell Biol 68(12):1344–1351

    Article  CAS  Google Scholar 

  7. Kuboyama T, Yokoshima S, Tokuyama H, Fukuyama T (2004) Stereocontrolled total synthesis of (+)-vincristine. Proc Natl Acad Sci 101(33):11966–11970

    Article  CAS  Google Scholar 

  8. Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628

    Article  Google Scholar 

  9. Ishikawa H, Elliott GI, Velcicky J, Choi Y, Boger DL (2006) Total synthesis of (−)-and ent-(+)-vindoline and related alkaloids. J Am Chem Soc 128(32):10596–10612

    Article  CAS  Google Scholar 

  10. Zárate R, Verpoorte R (2007) Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 6(2–3):475–491

    Article  Google Scholar 

  11. Guirimand G, Burlat V, Oudin A, Lanoue A, St-Pierre B, Courdavault V (2009) Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep 28(8):1215–1234

    Article  CAS  Google Scholar 

  12. Verma P, Mathur AK (2011) Direct shoot bud organogenesis and plant regeneration from pre-plasmolysed leaf explants in Catharanthus roseus. Plant Cell Tiss Org 106(3):401–408

    Article  CAS  Google Scholar 

  13. Pan Q, Wang Q, Yuan F, Xing S, Zhao J, Choi YH, Verpoorte R, Tian Y, Wang G, Tang K (2012) Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS One 7(8):e43038

    Article  CAS  Google Scholar 

  14. Wang Y, van Kronenburg B, Menzel T, Maliepaard C, Shen X, Krens F (2012) Regeneration and agrobacterium-mediated transformation of multiple lily cultivars. Plant Cell Tiss Org 111(1):113–122

    Article  CAS  Google Scholar 

  15. Kumar SR, Shilpashree HB, Nagegowda DA (2018) Terpene moiety enhancement by overexpression of geranyl (geranyl) diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic Catharanthus roseus. Front Plant Sci 9:942

    Article  Google Scholar 

  16. Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102(3):162–170

    Article  CAS  Google Scholar 

  17. Shah SH, Ali S, Jan SA, Ali GM (2015) Piercing and incubation method of in planta transformation producing stable transgenic plants by overexpressing DREB1A gene in tomato (Solanum lycopersicum Mill.). Plant Cell Tiss Org 120(3):1139–1157

    Article  CAS  Google Scholar 

  18. Ben-Amar A, Cobanov P, Buchholz G, Mliki A, Reustle G (2013) In planta agro-infiltration system for transient gene expression in grapevine (Vitis spp.). Acta Physiol Plant 35(11):3147–3156

    Article  CAS  Google Scholar 

  19. Yellisetty V, Reddy LA, Mandapaka M (2015) In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses. J Genet 94(3):425–434

    Article  CAS  Google Scholar 

  20. Keshamma E, Rohini S, Sankara Rao K, Madhusudhan B, Udaya Kumar M (2008) Tissue culture-independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12(3):264–272

    CAS  Google Scholar 

  21. Jaganath B, Subramanyam K, Mayavan S, Karthik S, Elayaraja D, Udayakumar R, Manickavasagam M, Ganapathi A (2014) An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. Protoplasma 251(3):591–601

    Article  CAS  Google Scholar 

  22. Kumar SR, Rai A, Bomzan DP, Kumar K, Hemmerlin A, Dwivedi V, Godbole RC, Barvkar V, Shanker K, Shilpashree HB, Bhattacharya A (2020) A plastid-localized bona fide geranylgeranyl diphosphate synthase plays a necessary role in monoterpene indole alkaloid biosynthesis in Catharanthus roseus. Plant J 103(1):248–265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology (Govt. of India) supported project (GAP-272: BT/PR6109/AGII/106/857/2012) to D.A.N. D.P.B is the recipient of Research Fellowship from University Grant Commission (UGC) and enrolled under Academy of Scientific and Innovative Research (AcSIR). Shilpashree H.B is the recipient of ICMR JRF fellowship and enrolled under CIMAP-JNU PhD program. The institutional communication number for this article is CIMAP/PUB/2021/APR/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh A. Nagegowda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bomzan, D.P., Shilpashree, H.B., Nagegowda, D.A. (2022). Agrobacterium-Mediated in Planta Transformation in Periwinkle. In: Courdavault, V., Besseau, S. (eds) Catharanthus roseus. Methods in Molecular Biology, vol 2505. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2349-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2349-7_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2348-0

  • Online ISBN: 978-1-0716-2349-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics