Skip to main content

Molecular Farming in Seed Crops: Gene Transfer into Barley (Hordeum vulgare ) and Wheat (Triticum aestivum )

  • Protocol
  • First Online:
Recombinant Proteins in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2480))

Abstract

The production of recombinant proteins in seed crops has a long history and cereal grains are now one of the platforms in commercial use. Specific advantages include excellent storage properties, a well-developed endomembrane system with a high biosynthetic capacity and well-established cultivation procedures worldwide. However, the production of transgenic cereals is a time-consuming procedure and the lack of efficient transformation systems is still a significant bottleneck. Barley can be transformed at high efficiency but the protocols are genotype-dependent. Wheat is generally more challenging to transform, but considerable progress has been made in enhancing transformation efficiencies and in controlling transgene expression. In this chapter, we describe and discuss standard procedures for generating transgenic barley and wheat for the production of recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sack M, Rademacher T, Spiegel H, Boes A, Hellwig S, Drossard J, Stoger E, Fischer R (2015) From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. Plant Biotechnol J 13(8):1094–1105. https://doi.org/10.1111/pbi.12438

    Article  CAS  PubMed  Google Scholar 

  2. Bevan MW, Flavell RB, Chilton MD (1992) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. 1983. Biotechnology 24:367–370

    CAS  PubMed  Google Scholar 

  3. Rivera AL, Gomez-Lim M, Fernandez F, Loske AM (2012) Physical methods for genetic plant transformation. Phys Life Rev 9(3):308–345. https://doi.org/10.1016/j.plrev.2012.06.002

    Article  PubMed  Google Scholar 

  4. Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJ (1986) The expression of a nopaline synthase—human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6(5):347–357. https://doi.org/10.1007/BF00034942

    Article  CAS  PubMed  Google Scholar 

  5. Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170. https://doi.org/10.1016/j.copbio.2014.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21(12):570–578. https://doi.org/10.1016/j.tibtech.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Tschofen M, Knopp D, Hood E, Stoger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem (Palo Alto, Calif) 9(1):271–294. https://doi.org/10.1146/annurev-anchem-071015-041706

    Article  Google Scholar 

  8. Virdi V, Palaci J, Laukens B, Ryckaert S, Cox E, Vanderbeke E, Depicker A, Callewaert N (2019) Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nat Biotechnol 37(5):527–530. https://doi.org/10.1038/s41587-019-0070-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Endo T, Asaka D, Nakayama T, Saito S, Kodama H, Mitsuyoshi R, Takaishi S, Sugimoto N, Omae S, Takagi H, Wakasa Y, Ozawa K, Takano M, Takaiwa F, Kojima H, Saito S (2021) Immunological and symptomatic effects of Oral intake of transgenic Rice containing 7 linked major T-cell epitopes from Japanese cedar pollen allergens. Int Arch Allergy Immunol 182(2):109–119. https://doi.org/10.1159/000509996

    Article  CAS  PubMed  Google Scholar 

  10. Brereton HM, Chamberlain D, Yang R, Tea M, McNeil S, Coster DJ, Williams KA (2007) Single chain antibody fragments for ocular use produced at high levels in a commercial wheat variety. J Biotechnol 129(3):539–546. https://doi.org/10.1016/j.jbiotec.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  11. Vamvaka E, Twyman RM, Murad AM, Melnik S, Teh AY, Arcalis E, Altmann F, Stoger E, Rech E, Ma JK, Christou P, Capell T (2016) Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnol J 14(1):97–108. https://doi.org/10.1111/pbi.12360

    Article  CAS  PubMed  Google Scholar 

  12. Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E (2008) Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol J 6(2):189–201. https://doi.org/10.1111/j.1467-7652.2007.00306.x

    Article  CAS  PubMed  Google Scholar 

  13. Hensel G, Floss DM, Arcalis E, Sack M, Melnik S, Altmann F, Rutten T, Kumlehn J, Stoger E, Conrad U (2015) Transgenic production of an anti HIV antibody in the barley endosperm. PLoS One 10(10):e0140476. https://doi.org/10.1371/journal.pone.0140476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Magnusdottir A, Vidarsson H, Bjornsson JM, Orvar BL (2013) Barley grains for the production of endotoxin-free growth factors. Trends Biotechnol 31(10):572–580. https://doi.org/10.1016/j.tibtech.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  15. Youngblood BA, Alfano R, Pettit SC, Zhang D, Dallmann HG, Huang N, Macdonald CC (2014) Application of recombinant human leukemia inhibitory factor (LIF) produced in rice (Oryza sativa L.) for maintenance of mouse embryonic stem cells. J Biotechnol 172:67–72. https://doi.org/10.1016/j.jbiotec.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  16. Hensel G (2020) Genetic transformation of Triticeae cereals—summary of almost three-decade’s development. Biotechnol Adv 40:107484. https://doi.org/10.1016/j.biotechadv.2019.107484

    Article  PubMed  Google Scholar 

  17. Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cardenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN Jr (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28(7):1510–1520. https://doi.org/10.1105/tpc.16.00196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S (2020) Genetically modified crops: current status and future prospects. Planta 251(4):91. https://doi.org/10.1007/s00425-020-03372-8

    Article  CAS  PubMed  Google Scholar 

  19. Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63(5):1791–1798. https://doi.org/10.1093/jxb/err380

    Article  CAS  PubMed  Google Scholar 

  20. Kapusi E, Corcuera-Gomez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small Indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540. https://doi.org/10.3389/fpls.2017.00540

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buyel JF, Stoger E, Bortesi L (2021) Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 30(4):401–426. https://doi.org/10.1007/s11248-021-00236-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rademacher T, Arcalis E, Stoger E (2009) Production and localization of recombinant pharmaceuticals in transgenic seeds. Methods Mol Biol 483:69–87. https://doi.org/10.1007/978-1-59745-407-0_5

    Article  CAS  PubMed  Google Scholar 

  23. Kapusi E, Stoger E (2018) Detection of CRISPR/Cas9-induced genomic fragment deletions in barley and generation of homozygous edited lines via embryogenic pollen culture. Methods Mol Biol 1789:9–20. https://doi.org/10.1007/978-1-4939-7856-4_2

    Article  CAS  PubMed  Google Scholar 

  24. Becker D, Brettschneider R, Lorz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5(2):299–307. https://doi.org/10.1046/j.1365-313x.1994.05020299.x

    Article  CAS  PubMed  Google Scholar 

  25. Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J (2009) Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomics 2009:835608. https://doi.org/10.1155/2009/835608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104(1):37–48. https://doi.org/10.1104/pp.104.1.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding of the project “Phenotyping Across Experimental Scales.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Stoger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kapusi, E., Stoger, E. (2022). Molecular Farming in Seed Crops: Gene Transfer into Barley (Hordeum vulgare ) and Wheat (Triticum aestivum ). In: Schillberg, S., Spiegel, H. (eds) Recombinant Proteins in Plants. Methods in Molecular Biology, vol 2480. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2241-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2241-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2240-7

  • Online ISBN: 978-1-0716-2241-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics