Skip to main content

Replication Labeling Methods for Super-Resolution Imaging of Chromosome Territories and Chromatin Domains

  • Protocol
  • First Online:
Chromosome Architecture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2476))

Abstract

Continuing progress in super-resolution microscopy enables the study of sub-chromosomal chromatin organization in single cells with unprecedented detail. Here we describe refined methods for pulse-chase replication labeling of individual chromosome territories (CTs) and replication domain units in mammalian cell nuclei, with specific focus on their application to three-dimensional structured illumination microscopy (3D-SIM). We provide detailed protocols for highly efficient electroporation-based delivery or scratch loading of cell-impermeable fluorescent nucleotides for live-cell studies. Furthermore, we describe the application of (2′S)-2′-deoxy-2′-fluoro-5-ethynyluridine (F-ara-EdU) and 5-vinyl-2′-deoxyuridine (VdU) for the in situ detection of segregated chromosome territories and sister chromatids with minimized cytotoxic side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cremer T, Cremer M, Hübner B et al (2015) The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett. https://doi.org/10.1016/j.febslet.2015.05.037

  2. Lemaître C, Bickmore WA (2015) Chromatin at the nuclear periphery and the regulation of genome functions. Histochem Cell Biol 144:111–122. https://doi.org/10.1007/s00418-015-1346-y

    Article  CAS  PubMed  Google Scholar 

  3. Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284. https://doi.org/10.1016/j.cell.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  4. Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20:290–299. https://doi.org/10.1038/nsmb.2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Finn EH, Misteli T (2019) Molecular basis and biological function of variability in spatial genome organization. Science 365. https://doi.org/10.1126/science.aaw9498

  6. Cremer T, Cremer M (2010) Chromosome territories. Cold Sprind Harbor Perspect Biol 2:a003889

    Google Scholar 

  7. Schermelleh L, Solovei I, Zink D, Cremer T (2001) Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells. Chromosom Res 9:77–80

    Article  CAS  Google Scholar 

  8. Cremer T, Cremer M (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301. https://doi.org/10.1038/35066075

    Article  CAS  PubMed  Google Scholar 

  9. de Laat W, Dekker J (2012) 3C-based technologies to study the shape of the genome. Methods 58:189–191. https://doi.org/10.1016/j.ymeth.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  10. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nasmyth K (2001) Disseminating the genome: joining, resolving, and seperating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745

    Article  CAS  Google Scholar 

  12. Eagen KP (2018) Principles of chromosome architecture revealed by Hi-C. Trends Biochem Sci 43:469–478. https://doi.org/10.1016/j.tibs.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175. https://doi.org/10.1083/jcb.201002018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC (2019) Super-resolution microscopy demystified. Nat Cell Biol 21:72–84. https://doi.org/10.1038/s41556-018-0251-8

    Article  CAS  PubMed  Google Scholar 

  15. Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970. https://doi.org/10.1529/biophysj.107.120345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MGL, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336. https://doi.org/10.1126/science.1156947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miron E, Oldenkamp R, Brown JM, Pinto DMS, Xu CS, Faria AR, Shaban HA, Rhodes JDP, Innocent C, De Ornellas S, Hess HF, Buckle V, Schermelleh L (2020) Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin. Sci Adv 6. https://doi.org/10.1126/sciadv.aba8811

  18. Ochs F, Karemore G, Miron E, Brown J, Sedlackova H, Rask MB, Lampe M, Buckle V, Schermelleh L, Lukas J, Lukas C (2019) Stabilization of chromatin topology safeguards genome integrity. Nature 574:571–574. https://doi.org/10.1038/s41586-019-1659-4

    Article  CAS  PubMed  Google Scholar 

  19. Markaki Y, Gunkel M, Schermelleh L et al (2010) Functional nuclear organization of transcription and DNA replication: a topographical marriage between chromatin domains and the interchromatin compartment. Cold Spring Harb Symp Quant Biol 75:475–492. https://doi.org/10.1101/sqb.2010.75.042

    Article  CAS  PubMed  Google Scholar 

  20. Baddeley D, Chagin VO, Schermelleh L et al (2010) Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res 38:e8. https://doi.org/10.1093/nar/gkp901

    Article  CAS  PubMed  Google Scholar 

  21. Chagin VO, Casas-Delucchi CS, Reinhart M, Schermelleh L, Makaki Y, Maiser A, Bolius JJ, Bensimon A, Fillies M, Domaing P, Rozanov YM, Leonhardt H, Cardoso MC (2016) 4D visualisation of replication foci in mammalian cells corresponding to individual replicons. Nat Commun 7. https://doi.org/10.1038/ncomms11231

  22. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420. https://doi.org/10.1073/pnas.0712168105

    Article  PubMed  PubMed Central  Google Scholar 

  23. Neef AB, Luedtke NW (2011) Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc Natl Acad Sci U S A 108:20404–20409. https://doi.org/10.1073/pnas.1101126108

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rieder U, Luedtke NW (2014) Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Angew Chem Int Ed 53:9168–9172. https://doi.org/10.1002/anie.201403580

    Article  CAS  Google Scholar 

  25. Schermelleh L (2006) In vivo replication labeling. In: Cells JE (ed) Cell biology: a laboratory handbook, vol 1, 3rd edn. Elsevier Science, pp 301–303

    Chapter  Google Scholar 

  26. Markaki Y, Smeets D, Cremer M, Schermelleh L (2013) Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy. Nano. https://doi.org/10.1007/978-62703-137-0_4

  27. Kraus F, Miron E, Demmerle J, Chitiashvili T, Budco A, Alle Q, Matsuda A, Leonhardt H, Schermelleh L, Markaki Y (2017) Quantitative 3D structured illumination microscopy of nuclear structures. Nat Protoc Rev 12:1011–1028. https://doi.org/10.1038/nprot.2017.020

    Article  CAS  Google Scholar 

  28. Olivier N, Keller D, Rajan VS, Gönczy P, Manley S (2013) Simple buffers for 3D STORM microscopy. Biomed Opt Express 4:885. https://doi.org/10.1364/BOE.4.000885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Demmerle J, Innocent C, North AJ, Ball G, Müller M, Miron E, Matsuda A, Dobbie IM, Markaki Y, Schermelleh L (2017) Strategic and practical guidelines for successful structured illumination microscopy. Nat Protoc Rev 12:988–1010. https://doi.org/10.1038/nprot.2017.019

    Article  CAS  Google Scholar 

  30. Schneider K, Fuchs C, Dobay A et al (2013) Dissection of cell cycle-dependent dynamics of Dnmt1 by FRAP and diffusion-coupled modeling. Nucleic Acids Res 41:4860–4876. https://doi.org/10.1093/nar/gkt191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsuda A, Schermelleh L, Hirano Y, Haraguchi T, Hiraoka Y (2018) Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy. Sci Rep 8. https://doi.org/10.1038/s41598-018-25922-7

  32. Matsuda A, Koujin T, Schermelleh L, Haraguchi T, Hiraoka Y (2020) High-accuracy correction of 3D chromatic shifts in the age of super-resolution biological imaging using Chromagnon. JoVe 160. https://doi.org/10.3791/60800

Download references

Acknowledgments

This work was supported by the Wellcome Trust Strategic Award 091911, funding advanced microscopy at Micron Oxford, and the John Fell Oxford University Press (OUP) Research Fund 143/064. Fena Ochs was supported by a DFF International Postdoc Fellowship (0164-00011B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Schermelleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miron, E., Windo, J., Ochs, F., Schermelleh, L. (2022). Replication Labeling Methods for Super-Resolution Imaging of Chromosome Territories and Chromatin Domains. In: Leake, M.C. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 2476. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2221-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2221-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2220-9

  • Online ISBN: 978-1-0716-2221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics