Skip to main content

Measuring Plasma Membrane Recycling Using Microscopic and Biochemical Approaches

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2473))

  • 1323 Accesses

Abstract

The endocytic pathway has an intricate network of vesicular compartments carrying a variety of proteins referred to as cargoes. Endosomal trafficking is exclusively required to transport these cargoes through various intracellular routes for their delivery to the site of action. Among these, recycling of cargoes to the plasma membrane is a crucial pathway for the efficient functioning of the cell. Hence, endosomal cargo recycling assays are crucial to gain insight into the molecular mechanism governing recycling of the cargoes and in turn to understand their key role in maintaining cellular physiology. These assays have been efficiently utilized to study the recycling of adhesion molecules, transporters, channels, receptors, and so on to the plasma membrane. The basic methodology involves labelling of the cargo at the surface, allowing its internalization followed by direct or indirect measurement of the amount of the cargo recycled back to the plasma membrane. These microscopy-based and biochemical methods can be used as a tool to study the role of various trafficking or signaling molecules on the cell surface involved with the recycling of the membrane proteins, by altering their expression either by silencing or overexpressing the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Apaja PM, Lukacs GL (2014) Protein homeostasis at the plasma membrane. Physiology 29:265–277. https://doi.org/10.1152/physiol.00058.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Okiyoneda T, Apaja PM, Lukacs GL (2011) Protein quality control at the plasma membrane. Curr Opin Cell Biol 23:483–491. https://doi.org/10.1016/j.ceb.2011.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Evans PR, Owen DJ (2002) Endocytosis and vesicle trafficking. Curr Opin Struct Biol 12(6):814–821. https://doi.org/10.1016/s0959-440x(02)00395-0

    Article  CAS  PubMed  Google Scholar 

  4. Elkin SR, Lakoduk AM, Schmid SL (2016) Endocytic pathways and endosomal trafficking: a primer. Wien Med Wochenschr 166(7–8):196–204. https://doi.org/10.1007/s10354-016-0432-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wandinger-Ness A, Zerial M (2014) Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 6(11):a022616. https://doi.org/10.1101/cshperspect.a016162

    Article  PubMed  PubMed Central  Google Scholar 

  6. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141(3):497–508. https://doi.org/10.1016/j.cell.2010.03.011

    Article  CAS  PubMed  Google Scholar 

  7. Klumperman J, Raposo G (2014) The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol 6:a016857. https://doi.org/10.1101/cshperspect.a016857

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, Di Fiore PP, Oldani A, Garre M, Beznoussenko GV, Palamidessi A, Vecchi M, Chavrier P, Perez F, Scita G (2016) RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep 17:1061–1080. https://doi.org/10.15252/embr.201642032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Di Fiore PP, von Zastrow M (2014) Endocytosis, signaling, and beyond. Cold Spring Harb Perspect Biol 6:a016865. https://doi.org/10.1101/cshperspect.a016865

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dozynkiewicz MA, Jamieson NB, MacPherson I, Grindlay J, van den Berghe PVE, von Thun A, Morton JP, Gourley C, Timpson P, Nixon C, McKay CJ, Carter R, Strachan D, Anderson K, Sansom OJ, Caswell PT, Norman JC (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev Cell 22:131–145. https://doi.org/10.1016/j.devcel.2011.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma P, Parveen S, Shah LV, Mukherjee M, Kalaidzidis Y, Kozielski AJ, Rosato R, Chang JC, Datta S (2020) SNX27–retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol 219:e201812098. https://doi.org/10.1083/jcb.201812098

    Article  CAS  PubMed  Google Scholar 

  12. Teuchert M, Berghö S, Klenk H-D, Garten W (1999) Recycling of Furin from the plasma membrane functional importance of the cytoplasmic tail sorting signals and interaction with the AP-2 adaptor medium chain subunit. J Biol Chem 274(51):36781–36789. https://doi.org/10.1074/jbc.274.51.36781

    Article  CAS  PubMed  Google Scholar 

  13. Arancibia-Cárcamo IL, Fairfax BP, Moss SJ, Kittler JT (2006) Studying the localization, surface stability and endocytosis of neurotransmitter receptors by antibody labeling and biotinylation approaches. In: The dynamic synapse: molecular methods in ionotropic receptor biology. CRC Press, Boca Raton, Florida, pp 91–118

    Google Scholar 

  14. Morton PE, Parsons M (2011) Dissecting cell adhesion architecture using advanced imaging techniques. Cell Adhes Migr 5:351–359. https://doi.org/10.4161/cam.5.4.16915

    Article  Google Scholar 

  15. Yildiz A, Vale RD (2015) Total internal reflection fluorescence microscopy. Cold Spring Harb Protoc 2015:801–810. https://doi.org/10.1101/pdb.top086348

    Article  Google Scholar 

  16. Miesenböck G (2012) Synapto-pHluorins: genetically encoded reporters of synaptic transmission. Cold Spring Harb Protoc 7:213–217. https://doi.org/10.1101/pdb.ip067827

    Article  Google Scholar 

  17. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195. https://doi.org/10.1038/28190

    Article  PubMed  Google Scholar 

  18. Monteiro P, Rossé C, Castro-Castro A, Irondelle M, Lagoutte E, Paul-Gilloteaux P, Desnos C, Formstecher E, Darchen F, Perrais D, Gautreau A, Hertzog M, Chavrier P (2013) Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J Cell Biol 203:1063–1079. https://doi.org/10.1083/jcb.201306162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turvy DN, Blum JS (2000) Biotin labeling and quantitation of cell-surface proteins. Curr Protoc Immunol 36. https://doi.org/10.1002/0471142735.im1807s36

  20. Elia G (2012) Cell surface protein biotinylation for SDS-PAGE analysis. Methods Mol Biol 869:361–372. https://doi.org/10.1007/978-1-61779-821-4_29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Yannis Kalaidzidis for helping with our TIRF image analysis using Motion Tracking software and Angelika Giner for providing us the protocol for preparing Mowiol. We also thank Dr. Amulya Priya for her critical suggestions while writing the chapter.

This work was supported by Department of Science and Technology (EMR/2016/00340 and SR/FST/LSI-643/2015 (C)), the Council of Scientific and Industrial Research 27(0326/17/EMR-II7), and Department of Biotechnology (102/IFD/SAN/1941/2018-2019).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, P., Parveen, S., Datta, S. (2022). Measuring Plasma Membrane Recycling Using Microscopic and Biochemical Approaches. In: Shen, J. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 2473. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2209-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2209-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2208-7

  • Online ISBN: 978-1-0716-2209-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics