Skip to main content

Soapbark Triterpenes: Quillaja brasiliensis Cell Culture Sapogenin and Free Sterol Analysis by GCMS

  • Protocol
  • First Online:
Plant Secondary Metabolism Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2469))

Abstract

Triterpene saponins of the genus Quillaja (Quillajaceae) are known for their immunoadjuvant, hypocholesterolemic, and anti-inflammatory activity. Plant cell cultures are useful for the study of saponin metabolism and industrial production of these bioactive compounds. While structurally related phytosterols are primary metabolites essential to growth and development, saponins are responsive to pathogen and abiotic stress, fulfilling roles in plant specialized metabolism. For cell culture production of saponins, phytosterols may be considered a competing pathway which relies on a common pool of cytosolic isoprenoid precursors.

Understanding the metabolic allocation of resources between these two related pathways is key to maximizing saponin production in in vitro production systems. Sterols and saponins naturally occur in multiple conjugated forms, which complicate separation and quantification. The acid hydrolysis of conjugated sterols and saponins to their free forms is a useful technique to simplify their analysis by gas chromatography. Here we provide the workflow for the quantification of free sterols and sapogenins in cell cultures of Quillaja brasiliensis .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lara JA, Burciaga-Monge A, Chávez A et al (2018) Identification and characterization of sterol acyltransferases responsible for steryl ester biosynthesis in tomato. Front Plant Sci 9:588

    Article  Google Scholar 

  2. Reichert CL, Salminen H, Weiss J (2019) Quillaja saponin characteristics and functional properties. Annu Rev Food Sci Tech 10:43–73

    Article  CAS  Google Scholar 

  3. Osbourn A, Reed J (2019) Metabolic engineering. Patent cooperation treaty EP2018/086430, application WO 2019/122259 A1, 20 Dec 2018

    Google Scholar 

  4. Magedans YV, Yendo AC, de Costa F et al (2019) Foamy matters: an update on Quillaja saponins and their use as immunoadjuvants. Future Med Chem 11:1485–1499

    Article  CAS  Google Scholar 

  5. Kensil CR, Patel U, Lennick M et al (1991) Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 146:431–437

    CAS  PubMed  Google Scholar 

  6. Yendo ACA, de Costa F, Cibulski SP et al (2016) A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge. Vaccine 34:2305–2311

    Article  CAS  Google Scholar 

  7. Santos FN, Borja-Cabrera GP, Miyashiro L et al (2007) Immunotherapy against experimental canine visceral leishmaniasis with the saponin enriched-Leishmune® vaccine. Vaccine 25:6176–6190

    Article  CAS  Google Scholar 

  8. James SF, Chahine EB, Sucher AJ, Hanna C (2018) Shingrix: the new adjuvanted recombinant herpes zoster vaccine. Ann Pharmacother 52:673–680

    Article  CAS  Google Scholar 

  9. Guerra Mendoza Y, Garric E, Leach A et al (2019) Safety profile of the RTS, S/AS01 malaria vaccine in infants and children: additional data from a phase III randomized controlled trial in sub-Saharan Africa. Hum Vaccin Immunother 15:2386–2398

    Article  Google Scholar 

  10. Arslan I (2020) Quillaic acid–containing saponin-based immunoadjuvants trigger early immune responses. Rev Bras Farmacogn 30:467–473

    Article  CAS  Google Scholar 

  11. Roberts A, Lamirande EW, Vogel L et al (2010) Immunogenicity and protective efficacy in mice and hamsters of a β-propiolactone inactivated whole virus SARS-CoV vaccine. Viral Immunol 23:509–519

    Article  CAS  Google Scholar 

  12. Gupta T, Gupta SK (2020) Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. Int Immunopharmacol 86:106717

    Article  CAS  Google Scholar 

  13. Sharma R, Palanisamy A, Dhama K et al (2020) Exploring the possible use of saponin adjuvants in COVID-19 vaccine. Hum Vaccin Immunother 16:2944–2953

    Article  CAS  Google Scholar 

  14. da Silva MYV, Phillips MA, Fett-Neto AG (2020) Production of plant bioactive triterpenoid saponins: from metabolites to genes and back. Phytochem Rev 20:461–482

    Google Scholar 

  15. Valitova JN, Sulkarnayeva AG, Minibayeva FV (2016) Plant sterols: diversity, biosynthesis, and physiological functions. Biochem Mosc 81:819–834

    Article  CAS  Google Scholar 

  16. Ferrer A, Altabella T, Arró M, Boronat A (2017) Emerging roles for conjugated sterols in plants. Prog Lipid Res 67:27–37

    Article  CAS  Google Scholar 

  17. Rogowska A, Szakiel A (2020) The role of sterols in plant response to abiotic stress. Phytochem Rev 19:1525–1538

    Article  CAS  Google Scholar 

  18. Planas-Riverola A, Gupta A, Betegón-Putze I et al (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development 146:dev151894

    Article  Google Scholar 

  19. Osbourn A, Goss RJM, Field RA (2011) The saponins—polar isoprenoids with important and diverse biological activities. Nat Prod Rep 28:1261–1268

    Article  CAS  Google Scholar 

  20. Yang C-R, Zhang Y, Jacob MR et al (2006) Antifungal activity of C-27 steroidal saponins. Antimicrob Agents Chemother 50:1710–1714

    Article  CAS  Google Scholar 

  21. Meesapyodsuk D, Balsevich J, Reed DW et al (2007) Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol 143:959–969

    Article  CAS  Google Scholar 

  22. Assimopoulou A, Papageorgiou V (2005) GC-MS analysis of penta-and tetra-cyclic triterpenes from resins of Pistacia species. Part I. Pistacia lentiscus var. Chia. Biomed Chromatogr 19:285–311

    Article  CAS  Google Scholar 

  23. Lai C, Li S, Yu H et al (2006) A rapid HPLC–ESI-MS/MS for qualitative and quantitative analysis of saponins in “XUESETONG” injection. J Pharm Biomed Anal 40:669–678

    Article  CAS  Google Scholar 

  24. Christie W, Han X (2010) Lipid analysis. The Oily Press, Bridgewater

    Book  Google Scholar 

  25. Abidi S (2001) Chromatographic analysis of plant sterols in foods and vegetable oils. J Chromatogr A 935:173–201

    Article  CAS  Google Scholar 

  26. Moreau RA, Nyström L, Whitaker BD et al (2018) Phytosterols and their derivatives: structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 70:35–61

    Article  CAS  Google Scholar 

  27. Flores-Sánchez IJ, Ortega-López J, Montes-Horcasitas M d C et al (2002) Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa. Plant Cell Physiol 43:1502–1509

    Article  Google Scholar 

  28. Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  CAS  Google Scholar 

  29. Mustafa NR, De Winter W, Van Iren F et al (2011) Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc 6:715–742

    Article  CAS  Google Scholar 

  30. Yendo AC, de Costa F, Kauffmann C et al (2017) Purification of an immunoadjuvant saponin fraction from Quillaja brasiliensis leaves by reversed-phase silica gel chromatography. In: Fox CB (ed) Vaccine Adjuvants, Methods in molecular biology, vol 1494. Springer, New York, pp 87–93

    Chapter  Google Scholar 

  31. Tava A, Biazzi E, Mella M et al (2017) Artefact formation during acid hydrolysis of saponins from Medicago spp. Phytochemistry 138:116–127

    Article  CAS  Google Scholar 

  32. Fleck JD, de Costa F, Yendo AC et al (2013) Determination of new immunoadjuvant saponin named QB-90, and analysis of its organ-specific distribution in Quillaja brasiliensis by HPLC. Nat Prod Res 27:907–910

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Magedans, Y.V.S., Phillips, M.A. (2022). Soapbark Triterpenes: Quillaja brasiliensis Cell Culture Sapogenin and Free Sterol Analysis by GCMS . In: Fett-Neto, A.G. (eds) Plant Secondary Metabolism Engineering. Methods in Molecular Biology, vol 2469. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2185-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2185-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2184-4

  • Online ISBN: 978-1-0716-2185-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics