Skip to main content

DNA Vaccines in Pigs: From Immunization to Antigen Identification

  • Protocol
  • First Online:
Vaccine Technologies for Veterinary Viral Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2465))

Abstract

DNA vaccination is one of the most fascinating vaccine strategies currently in development. Two of the main advantages of DNA immunization rely on its simplicity and flexibility, being ideal to dissect both the immune mechanisms and the antigens involved in protection against a given pathogen. Here we describe several strategies used to enhance the immune responses induced and the protection afforded by experimental DNA vaccines tested in swine and provide very basic protocols describing the generation and in vivo application of a prototypic DNA vaccine. The future will say the last word regarding the definitive implementation of DNA vaccination in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang DC, De Vit M, Parker JJ (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356:152–154

    Article  CAS  PubMed  Google Scholar 

  2. Klinman DK, Sechler JMG, Conover J et al (1998) Contribution of cells at the site of DNA vaccination to the generation of antigen-specific immunity and memory. J Immunol 160:2388–2392

    CAS  PubMed  Google Scholar 

  3. Klinman DK, Yamshchikov G, Ishigatsubo Y (1997) Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol 158(8):3635–3639

    CAS  PubMed  Google Scholar 

  4. Evensen Ø, Leong JAC (2013) DNA vaccines against viral diseases of farmed fish. Fish Shellfish Immunol 35:1751–1758

    Article  CAS  PubMed  Google Scholar 

  5. Ledgerwood JE, Pierson TC, Hubka SA et al (2013) A West Nile Virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis 2011:1396–1404

    Google Scholar 

  6. Babiuk S, van Drunen Little-van der Hurk S, Babiuk LA (2006) Delivery of DNA vaccines using electroporation. In: Saltzman WM, Shen H, Brandsma JL (eds) DNA vaccines. Methods and protocols, Methods in molecular medicine, vol 127, 2nd edn. Humana Press

    Google Scholar 

  7. Ganges L, Barrera M, Nuñez JI et al (2005) A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine 23:3741–3752

    Article  CAS  PubMed  Google Scholar 

  8. Argilaguet JM, Perez-Martin E, Gallardo C et al (2011) Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine 29:5379–5385

    Article  CAS  PubMed  Google Scholar 

  9. Gregoriadis G, Bacon A, Caparros-Wanderley W et al (2002) A role for liposomes in genetic vaccination. Vaccine 20:B1–B9

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Wu J, Wang B et al (2014) Oral vaccination with a liposome-encapsulated influenza DNA vaccine protects mice against respiratory challenge infection. J Med Virol 86:886–894

    Article  CAS  PubMed  Google Scholar 

  11. Haynes JR, McCabe DE, Swain WF et al (1996) Particle-mediated nucleic acid immunization. J Biotechnol 44:37–42

    Article  CAS  PubMed  Google Scholar 

  12. Fuller DH, Loudon P, Schmaljohn C (2006) Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 40:86–97

    Article  CAS  PubMed  Google Scholar 

  13. Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11:189–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prud’homme GJ, Draghia-Akli R, Wang Q (2007) Plasmid-based gene therapy of diabetes mellitus. Gene Ther 14:553–564

    Article  PubMed  Google Scholar 

  15. Fisher PD, Brambila CJ, McCoy JR et al (2017) Adipose tissue: a new target for electroporation-enhanced DNA vaccines. Gene Ther 24:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Menon I, Bagwe P, Gomes KB et al (2021) Microneedles: a new generation vaccine delivery system. Micromachines 12:435

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nguyen TT, Oh Y, Kim Y et al (2021) Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother 17(1):316–327

    Article  CAS  PubMed  Google Scholar 

  18. Li K, Gao H, Gao L et al (2013) Adjuvant effects of interleukin-18 in DNA vaccination against infectious bursal disease virus in chickens. Vaccine 31:1799–1805

    Article  CAS  PubMed  Google Scholar 

  19. Tian DY, Sun Y, Waib SF et al (2012) Enhancement of the immunogenicity of an alphavirus replicon-based DNA vaccine against classical swine fever by electroporation and coinjection with a plasmid expressing porcine interleukin 2. Vaccine 30:3587–3594

    Article  CAS  PubMed  Google Scholar 

  20. Boyle JS, Brady JL, Lew AM (1998) Enhanced responses to a DNA vaccine encoding a fusion antigen that is directed to sites of immune induction. Nature 392:408–411

    Article  CAS  PubMed  Google Scholar 

  21. Gil F, Perez-Filgueira M, Barderas MG et al (2011) Targeting antigens to an invariant epitope of the MHC Class II DR molecule potentiates the immune response to subunit vaccines. Virus Res 155:55–60

    Article  CAS  PubMed  Google Scholar 

  22. Borrego B, Argilaguet JM, Perez-Martin E et al (2011) A DNA vaccine encoding foot-and-mouth disease virus B and T-cell epitopes targeted to class II swine leukocyte antigens protects pigs against viral challenge. Antivir Res 92:359–363

    Article  CAS  PubMed  Google Scholar 

  23. Borca MV, Kutish GF, Afonso CL et al (1994) An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology 199:463–468

    Article  CAS  PubMed  Google Scholar 

  24. Argilaguet JM, Perez-Martin E, Nofrarias M et al (2012) DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One 7:e40942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alvarez B, Poderoso T, Alonso F et al (2013) Antigen targeting to APC: from mice to veterinary species. Dev Comp Immunol 41:153–163

    Article  CAS  PubMed  Google Scholar 

  26. Poderoso T, Martinez P, Alvarez B et al (2011) Delivery of antigen to sialoadhesin or CD163 improves the specific immune response in pigs. Vaccine 29:4813–4820

    Article  CAS  PubMed  Google Scholar 

  27. Oura CA, Denyer MS, Takamatsu H et al (2005) In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol 86:2445–2450

    Article  CAS  PubMed  Google Scholar 

  28. Rodríguez F, Zhang J, Whitton JL (1997) DNA immunization: ubiquitination of a viral protein enhances cytotoxic T-lymphocyte induction and antiviral protection but abrogates antibody induction. J Virol 71:8497–8503

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gravier R, Dory R, Rodriguez F et al (2007) Immune and protective abilities of ubiquitinated and non-ubiquitinated pseudorabies virus glycoproteins. Acta Virol 51:35–45

    CAS  PubMed  Google Scholar 

  30. Rodríguez F, Whitton JL (2000) Enhancing DNA immunization. Virology 268:233–238

    Article  PubMed  Google Scholar 

  31. Barry MA, Howell DP, Andersson HA et al (2004) Expression library immunization to discover and improve vaccine antigens. Immunol Rev 199:68–83

    Article  CAS  PubMed  Google Scholar 

  32. Lacasta A, Ballester M, Monteagudo PL et al (2014) Expression library immunization can confer protection against African swine fever virus lethal challenge. J Virol 88(22):13322–13332

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18:927–974

    Article  CAS  PubMed  Google Scholar 

  34. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760

    Article  CAS  PubMed  Google Scholar 

  35. Bosch-Camós L, López E, Navas MJ et al (2021) Identification of promiscuous African swine fever virus T-cell determinants using a multiple technical approach. Vaccines 9:1–20

    Article  Google Scholar 

  36. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Rooija EMA, Rijsewijkb FAM, Moonen-Leusena HW et al (2010) Comparison of different prime-boost regimes with DNA and recombinant Orf virus based vaccines expressing glycoprotein D of pseudorabies virus in pigs. Vaccine 28:1808–1813

    Article  Google Scholar 

  38. Jalah R, Kulkarni V, Patel V et al (2014) DNA and protein co-immunization improves the magnitude and longevity of humoral immune responses in macaques. PLoS One 9:e91550

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vasan S, Hurley A, Schlesinger SJ et al (2011) In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 6:e19252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palma P, Romiti ML, Montesano C et al (2013) Therapeutic DNA vaccination of vertically HIV-infected children: report of the first paediatric randomised trial (PEDVAC). PLoS One 8:e79957

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lorenzo G, Martín-Folgar R, Rodríguez F et al (2008) Priming with DNA plasmids encoding the nucleocapsid protein and glycoprotein precursors from Rift Valley fever virus accelerates the immune responses induced by an attenuated vaccine in sheep. Vaccine 26:5255–5262

    Article  CAS  PubMed  Google Scholar 

  42. Lu S (2009) Heterologous prime-boost vaccination. Curr Opin Immunol 21:346–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bosch-Camós L, López E, Collado J et al (2021) M448R and MGF505-7R: two African swine fever virus antigens commonly recognized by ASFV-specific T-cells and with protective potential. Vaccines 9(5):508

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Government (Project reference numbers: PID2019-107616RB-I00 and AGL2016-78160-C2-1-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Accensi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Accensi, F., Bosch-Camós, L., Monteagudo, P.L., Rodríguez, F. (2022). DNA Vaccines in Pigs: From Immunization to Antigen Identification. In: Brun, A. (eds) Vaccine Technologies for Veterinary Viral Diseases. Methods in Molecular Biology, vol 2465. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2168-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2168-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2167-7

  • Online ISBN: 978-1-0716-2168-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics