Skip to main content

Antidepressants, Sexual Behavior, and Translational Models for Male Sexual Dysfunction: Development of Animal Models, Pharmacology, and Genetics

  • Protocol
  • First Online:
Translational Research Methods for Major Depressive Disorder

Part of the book series: Neuromethods ((NM,volume 179))

Abstract

The discovery and development of the first generations of antidepressants in the last century, the tricyclic antidepressants and serotonin reuptake blockers, were a breakthrough in the pharmacological treatment of major depression. Along with the antidepressant activity came the sexual side effects, which contributed considerably to the high level of stopping treatment. In the subsequent search for new and better antidepressants, early detection of potential sexual side effects is of paramount importance, hence the need for predictive animal models. Sexual behavior of the male rat has been frequently used to detect inhibiting effects of psychotropic drugs. We developed a male rat model of sexual behavior that mirrored the human profile of antidepressants: sexual inhibitory effects only after chronic but not after acute administration. We extensively describe the methodology and the model and show the profile of various antidepressants and other psychotropics in male rat sexual behavior. To generate male rats for our experiments, we employ large cohorts of male Wistar rats that are trained once weekly in 30-min tests with estrous females for at least 4–7 times. During this training each individual rat develops its own stable sexual phenotype, being between 0 and 5 ejaculations per 30-min test. Such a (endo)phenotype appears very stable over time and animals can be used repeatedly for pharmacological experiments for over a year, providing an ideal intra-male experimental model. For testing the effects of drugs (e.g., antidepressants) on sexual behavior, we standardly use rats with stable ejaculation numbers of 2–3 per test, providing a model that is sensitive to both sexual-stimulating (prosexual) and sexual-inhibiting effects, and are able to dissect acute and chronic effects of drugs. The effects of various drugs tested in this model over the last decades are given.

By using the large cohort approach and sexual training, we discovered that the number of rats with 0, 1, 2, 3, 4, or 5 ejaculations (E) per test shows a bell-shaped distribution. Relatively few rats have either 0 or 1 E or 4 or 5 E/test, whereas those with 2 or 3 E/test are much more abundant. Based on the similarity of rat ejaculation number distribution with that of ejaculation latency distribution in human males, we postulate that fast ejaculating rats (4 or 5 E/test) are a translational model for premature ejaculation, whereas slow or not ejaculating rats (0 or 1 E/test) could model an-ejaculation or delayed ejaculation in men. Several pharmacological experiments are described supporting the use of these translational endophenotypic models of normal, slow, and fast ejaculating rats. The importance of the serotonergic system and in particular the role of 5-HT1A receptors in male sexual behavior is highlighted. The serotonin transporter knockout rat illustrates the influence of genetic modifications in male rat sexual behavior. This model displays a comparable sexual phenotype as chronically SSRI-treated rats. Such a genetic model may be useful in detecting underlying mechanisms of sexual dysfunctions (like delayed ejaculation) but may also contribute to the study of critically involved neurochemical systems. Finally, testing drugs with multimodal mechanisms of action in such genetic models might unravel new mechanisms involved, finally contributing to better treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, Dodel R, Ekman M, Faravelli C, Fratiglioni L, Gannon B, Jones DH, Jennum P, Jordanova A, Jönsson L, Karampampa K, Knapp M, Kobelt G, Kurth T, Lieb R, Linde M, Ljungcrantz C, Maercker A, Melin B, Moscarelli M, Musayev A, Norwood F, Preisig M, Pugliatti M, Rehm J, Salvador-Carulla L, Schlehofer B, Simon R, Steinhausen HC, Stovner LJ, Vallat JM, Van den Bergh P, van Os J, Vos P, Xu W, Wittchen HU, Jönsson B, Olesen J (2011) Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21(10):718–779. https://doi.org/10.1016/j.euroneuro.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  2. Nutt DJ (2011) The full cost and burden of disorders of the brain in Europe exposed for the first time. Eur Neuropsychopharmacol 21(10):715–717. https://doi.org/10.1016/j.euroneuro.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  3. Wittchen HU, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B, Olesen J, Allgulander C, Alonso J, Faravelli C, Fratiglioni L, Jennum P, Lieb R, Maercker A, van Os J, Preisig M, Salvador-Carulla L, Simon R, Steinhausen HC (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21(9):655–679. https://doi.org/10.1016/j.euroneuro.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  4. Balon R (2006) SSRI-associated sexual dysfunction. Am J Psychiatry 163:1504–1509

    Article  PubMed  Google Scholar 

  5. Chokka PR, Hankey JR (2018) Assessment and management of sexual dysfunction in the context of depression. Ther Adv Psychopharmacol 8(1):13–23. https://doi.org/10.1177/2045125317720642

    Article  PubMed  Google Scholar 

  6. Makhlouf A, Kparker A, Niederberger CS (2007) Depression and erectile dysfunction. Urol Clin North Am 34(4):565–574. https://doi.org/10.1016/j.ucl.2007.08.009

    Article  PubMed  Google Scholar 

  7. Segraves RT, Balon R (2014) Antidepressant-induced sexual dysfunction in men. Pharmacol Biochem Behav 121:132–137. https://doi.org/10.1016/j.pbb.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  8. Lahon K, Shetty HM, Paramel A, Sharma G (2011) Sexual dysfunction with the use of antidepressants in a tertiary care mental health setting - a retrospective case series. J Pharmacol Pharmacother 2(2):128–131. https://doi.org/10.4103/0976-500X.81913

    Article  PubMed  PubMed Central  Google Scholar 

  9. Waldinger MD (2011) Toward evidence-based genetic research on lifelong premature ejaculation: a critical evaluation of methodology. Korean J. Urol 52(1):1–8. https://doi.org/10.4111/kju.2011.52.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  10. Althof SE, Mcmahon CG, Waldinger MD, Serefoglu EC, Shindel AW, Adaikan PG, Becher E, Dean J, Giuliano F, Hellstrom WJG, Giraldi A, Glina S, Incrocci L, Jannini E, Mccabe M, Parish S, Rowland D, Segraves RT, Sharlip I, Torres LO (2014) An update of the International Society of Sexual Medicine’s guidelines for the diagnosis and treatment of premature ejaculation (PE). Sex. Med 2(2):60–90. https://doi.org/10.1002/sm2.28

    Article  PubMed  PubMed Central  Google Scholar 

  11. Waldinger MD, Zwinderman AH, Schweitzer DH, Olivier B (2004) Relevance of methodological design for the interpretation of efficacy of drug treatment of premature ejaculation: a systematic review and meta-analysis. Int J Impot Res 16(4):369–381. https://doi.org/10.1038/sj.ijir.3901172

    Article  CAS  PubMed  Google Scholar 

  12. Goodman RE (1980) An assessment of clomipramine (Anafranil®) in the treatment of premature ejaculation. J Int Med Res 8(S3):53–59

    PubMed  Google Scholar 

  13. Girgis SM, El-Haggar S, El-Hermouzy S (1982) A double-blind trial of clomipramine in premature ejaculation. Andrologia 14(4):364–368. https://doi.org/10.1111/j.1439-0272.1982.tb02278.x

    Article  CAS  PubMed  Google Scholar 

  14. Segraves RT, Saran A, Segraves K, Maguire E (1993) Clomipramine versus placebo in the treatment of premature ejaculation: a pilot study. J Sex Marital Ther 19(3):198–200. https://doi.org/10.1080/00926239308404904

    Article  CAS  PubMed  Google Scholar 

  15. Althof SE, Levine SB, Corty EW, Risen CB, Stern EB, Kurit DM (1995) A double-blind crossover trial of clomipramine for rapid ejaculation in 15 couples. J Clin Psychiatry 56(9):402–407

    CAS  PubMed  Google Scholar 

  16. Waldinger MD, Hengeveld MW, Zwinderman AH (1994) Paroxetine treatment of premature ejaculation: a double-blind, randomized, placebo-controlled study. Am J Psychiatry 151(9):1377–1379. https://doi.org/10.1176/ajp.151.9.1377

    Article  CAS  PubMed  Google Scholar 

  17. Waldinger MD, Hengeveld MW, Zwinderman AH, Olivier B (1998) Effect of SSRI antidepressants on ejaculation. J Clin Psychopharmacol 18:274–281

    Article  CAS  PubMed  Google Scholar 

  18. Waldinger MD (2005) Lifelong premature ejaculation: current debate on epidemiology and SSRI treatment. World J Urol 23:102–108

    Article  CAS  PubMed  Google Scholar 

  19. Pryor JL, Althof SE, Steidle C, Rosen RC, Hellstrom WJ, Shabsigh R, Miloslavsky M, Kell S (2006) Efficacy and tolerability of dapoxetine in treatment of premature ejaculation: an integrated analysis of two double-blind, randomised controlled trials. Lancet 368(9539):929–937. https://doi.org/10.1016/S0140-6736(06)69373-2

    Article  CAS  PubMed  Google Scholar 

  20. Waldinger MD, Schweitzer DH (2008) Premature ejaculation and pharmaceutical company-based medicine: the dapoxetine case. J Sex Med 5(4):966–997. https://doi.org/10.1111/j.1743-6109.2008.00633.x

    Article  CAS  PubMed  Google Scholar 

  21. Waldinger MD, Schweitzer DH, Olivier B (2006) Dapoxetine treatment of premature ejaculation. Lancet 368:1869

    Article  PubMed  Google Scholar 

  22. Park HJ, Park NC, Kim TN, Baek SR, Lee KM, Choe S (2017) Discontinuation of Dapoxetine treatment in patients with premature ejaculation: a 2-year prospective observational study. Sex Med 5:e99–e105

    Article  PubMed  PubMed Central  Google Scholar 

  23. Waldinger MD, Berendsen HHG, Blok BFM, Olivier B, Holstege G (1998) Premature ejaculation and serotonergic antidepressants-induced delayed ejaculation: the involvement of the serotonergic system. Behav Brain Res 92(2):111–118. https://doi.org/10.1016/S0166-4328(97)00183-6

    Article  CAS  PubMed  Google Scholar 

  24. Waldinger MD (2002) The neurobiological approach to premature ejaculation. J Urol 168(6):2359–2367. https://doi.org/10.1016/S0022-5347(05)64146-8

    Article  PubMed  Google Scholar 

  25. Waldinger MD, Zwinderman AH, Olivier B (2003) Antidepressants and ejaculation: a double-blind, randomized, fixed-dose study with mirtazapine and paroxetine. J Clin Psychopharmacol 23(5):467–470. https://doi.org/10.1097/01.jcp.0000088904.24613.e4

    Article  CAS  PubMed  Google Scholar 

  26. Waldinger MD, Olivier B (2004) Utility of selective serotonin reuptake inhibitors in premature ejaculation. Curr Opin Investig Drugs 5(7):743–747

    CAS  PubMed  Google Scholar 

  27. Waldinger MD, Van de Plas A, Pattij T, Van Oorschot R, Coolen LM, Veening JG, Olivier B (2002) The selective serotonin re-uptake inhibitors fluvoxamine and paroxetine differ in sexual inhibitory effects after chronic treatment. Psychopharmacology 160(3):283–289. https://doi.org/10.1007/s00213-001-0980-3

    Article  CAS  PubMed  Google Scholar 

  28. de Jong TR, Veening JG, Olivier B, Waldinger MD (2007) Oxytocin involvement in SSRI-induced delayed ejaculation: a review of animal studies. J Sex Med 4(1):14–28. https://doi.org/10.1111/j.1743-6109.2006.00394.x

    Article  CAS  PubMed  Google Scholar 

  29. Olivier B (2015) Serotonin: a never-ending story. Eur J Pharmacol 753:2–18. https://doi.org/10.1016/j.ejphar.2014.10.031

    Article  CAS  PubMed  Google Scholar 

  30. Rubio-Casillas A, Rodríguez-Quintero CM, Rodríguez-Manzo G, Fernández-Guasti A (2015) Unraveling the modulatory actions of serotonin on male rat sexual responses. Neurosci Biobehav Rev 55:234–246. https://doi.org/10.1016/j.neubiorev.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  31. Olivier J, Esquivel Franco D, Waldinger M, Olivier B (2019) In: Tricklebank E, Daly M (eds) The serotonin system: history, neuropharmacology, and pathology. Elsevier, Academic press, London, pp 117–132

    Chapter  Google Scholar 

  32. Olivier J, Olivier B (2019) Antidepressants and sexual dysfunction; translational aspects. Curr Sex Heal Rep 11:156–166

    Article  Google Scholar 

  33. Janssen PKC, Van Schaik R, Zwinderman AH, Olivier B, Waldinger MD (2014) The 5-HT1A receptor C(1019)G polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation. Pharmacol Biochem Behav 121:184–188. https://doi.org/10.1016/j.pbb.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  34. Janssen PKC, Schaik R, Olivier B, Waldinger MD (2014) The 5-HT2C receptor gene Cys23Ser polymorphism influences the intravaginal ejaculation latency time in Dutch Caucasian men with lifelong premature ejaculation. Asian J Androl 16(4):607–610. https://doi.org/10.4103/1008-682X.126371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Janssen PKC, Zwinderman AH, Olivier B, Waldinger MD (2014) Serotonin transporter promoter region (5-HTTLPR) polymorphism is not associated with paroxetine-induced ejaculation delay in Dutch men with lifelong premature ejaculation. Korean J Urol 55(2):129–123. https://doi.org/10.4111/kju.2014.55.2.129

    Article  PubMed  PubMed Central  Google Scholar 

  36. Janssen PKC, Bakker SC, Réthelyi J, Zwinderman AH, Touw DJ, Olivier B, Waldinger MD (2009) Serotonin transporter promoter region (5-HTTLPR) polymorphism is associated with the intravaginal ejaculation latency time in Dutch men with lifelong premature ejaculation. J Sex Med 6(1):276–284. https://doi.org/10.1111/j.1743-6109.2008.01033.x

    Article  CAS  PubMed  Google Scholar 

  37. Flaive A, Fougère M, van der Zouwen CI, Ryczko D (2020) Serotonergic modulation of locomotor activity from basal vertebrates to mammals. Front Neural Circuits 14:–590299. https://doi.org/10.3389/fncir.2020.590299

  38. Waldinger MD (2016) The pathophysiology of lifelong premature ejaculation. Transl Androl Urol 5(4):424–433. https://doi.org/10.21037/tau.2016.06.04

    Article  PubMed  PubMed Central  Google Scholar 

  39. Veening JG, Coolen LM (2014) Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits. Pharmacol Biochem Behav 121:170–183. https://doi.org/10.1016/j.pbb.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  40. Pfaus JG (2009) Pathways of sexual desire. J Sex Med 6(6):1506–1533. https://doi.org/10.1111/j.1743-6109.2009.01309.x

    Article  CAS  PubMed  Google Scholar 

  41. Pattij T, Olivier B, Waldinger M (2005) Animal models of ejaculatory behavior. Curr Pharm Des 11(31):4069–4077. https://doi.org/10.2174/138161205774913363

    Article  CAS  PubMed  Google Scholar 

  42. Snoeren EMS, Veening JG, Olivier B, Oosting RS (2014) Serotonin 1A receptors and sexual behavior in male rats: a review. Pharmacol Biochem Behav 121:102–114. https://doi.org/10.1016/j.pbb.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  43. Larsson K (1956) Conditioning and sexual behavior in the male albino rat. In: Elmgren J (ed) Acta Psychologica Gothoburgensia I. Almqvist & Wiksell, Stockholm pp. 1–269

    Google Scholar 

  44. Fernández-Guasti A, Rodríguez-Manzo G (2003) Pharmacological and physiological aspects of sexual exhaustion in male rats. Scand J Psychol 44(3):257–263. https://doi.org/10.1111/1467-9450.00343

    Article  PubMed  Google Scholar 

  45. Giuliano F, Clément P (2005) Neuroanatomy and physiology of ejaculation. Annu Rev Sex Res 16:190–216. https://doi.org/10.1080/10532528.2005.10559833

    Article  PubMed  Google Scholar 

  46. Giuliano F, Clément P (2005) Physiology of ejaculation: emphasis on serotonergic control. Eur Urol 48(3):408–417. https://doi.org/10.1016/j.eururo.2005.05.017

    Article  PubMed  Google Scholar 

  47. de Jong TR, Veening JG, Waldinger MD, Cools AR, Olivier B (2006) Serotonin and the neurobiology of the ejaculatory threshold. Neurosci Biobehav Rev 30(7):893–907. https://doi.org/10.1016/j.neubiorev.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  48. Truitt WA, Coolen LM (2002) Identification of a potential ejaculation generator in the spinal cord. Science 297(5586):1566–1569. https://doi.org/10.1126/science.1073885

    Article  CAS  PubMed  Google Scholar 

  49. Coolen LM, Allard J, Truitt WA, McKenna KE (2004) Central regulation of ejaculation. Physiol Behav 83(2):203–215. https://doi.org/10.1016/j.physbeh.2004.08.023

    Article  CAS  PubMed  Google Scholar 

  50. Allard J, Truitt WA, McKenna KE, Coolen LM (2005) Spinal cord control of ejaculation. World J Urol 23(2):119–126. https://doi.org/10.1007/s00345-004-0494-9

    Article  PubMed  Google Scholar 

  51. Gregorian RS, Golden KA, Bahce A, Goodman C, Kwong WJ, Khan ZM, De Bittner MR, Vanier MC (2002) Antidepressant-induced sexual dysfunction. Ann Pharmacother 36(10):1577–1589. https://doi.org/10.1345/aph.1A195

    Article  CAS  PubMed  Google Scholar 

  52. Ågmo A (1997) Male rat sexual behavior. Brain Res Protocol 1(2):203–209. https://doi.org/10.1016/S1385-299X(96)00036-0

    Article  Google Scholar 

  53. Ågmo A (2007) Functional and Dysfunctional Sexual Behavior. Elsevier, Amsterdam

    Google Scholar 

  54. Giuliano F, Clément P (2012) Pharmacology for the treatment of premature ejaculation. Pharmacol Rev 64(3):621–644. https://doi.org/10.1124/pr.111.004952

    Article  CAS  PubMed  Google Scholar 

  55. Olivier B, Chan JSW, Snoeren EM, Olivier JDA, Veening JG, Vinkers CH, Waldinger MD, Oosting RS (2011) Differences in sexual behaviour in male and female rodents: Role of serotonin. Curr Top Behav Neurosci 8:15–36

    Article  CAS  PubMed  Google Scholar 

  56. Heijkoop R, Huijgens PT, Snoeren EMS (2018) Assessment of sexual behavior in rats: the potentials and pitfalls. Behav Brain Res 352:70–80. https://doi.org/10.1016/j.bbr.2017.10.029

    Article  PubMed  Google Scholar 

  57. Hernandez C, Sabin M, Riede T (2017) Rats concatenate 22 kHz and 50 kHz calls into a single utterance. J Exp Biol 220(Pt 5):814–821. https://doi.org/10.1242/jeb.151720

    Article  PubMed  Google Scholar 

  58. Brudzynski SM (2009) Communication of adult rats by ultrasonic vocalization: biological, sociobiological, and neuroscience approaches. ILAR J 50(1):43–50. https://doi.org/10.1093/ilar.50.1.43

    Article  CAS  PubMed  Google Scholar 

  59. Willadsen M, Seffer D, Schwarting RKW, Wöhr M (2014) Rodent ultrasonic communication: male prosocial 50-khz ultrasonic vocalizations elicit social approach behavior in female rats (rattus norvegicus). J Comp Psychol 128(1):56–64. https://doi.org/10.1037/a0034778

    Article  PubMed  Google Scholar 

  60. Snoeren EMS, Ågmo A (2014) The incentive value of males’ 50-khz ultrasonic vocalizations for female rats (rattus norvegicus). J Comp Psychol 28(1):40–55. https://doi.org/10.1037/a0033204

    Article  Google Scholar 

  61. Barfield RJ, Geyer LA (1972) Sexual behavior: ultrasonic postejaculatory song of the male rat. Science 176(4041):1349–1350. https://doi.org/10.1126/science.176.4041.1349

    Article  CAS  PubMed  Google Scholar 

  62. Barfield RJ, Geyer LA (1975) The ultrasonic postejaculatory vocalization and postejaculatory refractory period of the male rat. J Comp Physiol Psychol 88(2):723–734. https://doi.org/10.1037/h0076435

    Article  CAS  PubMed  Google Scholar 

  63. Ågmo A, Snoeren EMS (2015) Silent or vocalizing rats copulate in a similar manner. PLoS One 10(12):e0144164. https://doi.org/10.1371/journal.pone.0144164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Olivier B, Mos J (1988) Effects of psychotropic drugs on sexual behaviour in male rats. In: Olivier B, Mos J (eds) Depression, anxiety and aggression: preclinical and clinical interfaces. Medidact, Houten, pp 121–134

    Google Scholar 

  65. Mos J, Olivier B, Bloetjes BK, Poth M (1990) Drug-induced facilitation of sexual behavior in the male rat: behavioural and pharmacological aspects. In: Slob MJ, Baum AK (eds) Psychoneuroendocrinology of growth and development. Medicom, Rotterdam, pp 221–232

    Google Scholar 

  66. Mos J, Mollet I, Tolboom JTBM, Waldinger MD, Olivier B (1999) A comparison of the effects of different serotonin reuptake blockers on sexual behaviour of the male rat. Eur Neuropsychopharmacol 9(1-2):123–135. https://doi.org/10.1016/S0924-977X(98)00015-7

    Article  CAS  PubMed  Google Scholar 

  67. Pattij T, De Jong TR, Uitterdijk A, Waldinger MD, Veening JG, Cools AR, Van Der Graaf PH, Olivier B (2005) Individual differences in male rat ejaculatory behaviour: searching for models to study ejaculation disorders. Eur J Neurosci 22(3):724–734. https://doi.org/10.1111/j.1460-9568.2005.04252.x

    Article  PubMed  Google Scholar 

  68. Olivier B, Chan JSW, Pattij T, De Jong TR, Oosting RS, Veening JG, Waldinger MD (2006) Psychopharmacology of male rat sexual behavior: modeling human sexual dysfunctions? Int J Impot Res 18(Suppl 1):S14–S23. https://doi.org/10.1038/sj.ijir.3901330

    Article  CAS  PubMed  Google Scholar 

  69. Chan JSW, Olivier B, de Jong TR, Snoeren EMS, Kooijman E, van Hasselt FN, Limpens JHW, Kas MJH, Waldinger MD, Oosting RS (2008) Translational research into sexual disorders: pharmacology and genomics. Eur J Pharmacol 585(2-3):426–435. https://doi.org/10.1016/j.ejphar.2008.02.098

    Article  CAS  PubMed  Google Scholar 

  70. Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110(2):135–370. https://doi.org/10.1016/j.pharmthera.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  71. Waldinger MD, Zwinderman AH, Olivier B (2001) Antidepressants and ejaculation: a double-blind, randomized, placebo-controlled, fixed-dose study with paroxetine, sertraline, and nefazodone. J Clin Psychopharmacol 21(3):293–297. https://doi.org/10.1097/00004714-200106000-00007

    Article  CAS  PubMed  Google Scholar 

  72. Waldinger MD, Zwinderman AH, Olivier B (2004) On-demand treatment of premature ejaculation with clomipramine and paroxetine: a randomized, double-blind fixed-dose study with stopwatch assessment. Eur Urol 46(4):510–515. https://doi.org/10.1016/j.eururo.2004.05.005

    Article  CAS  PubMed  Google Scholar 

  73. Waldinger MD, Scweitzer DH, Olivier B (2005) On- demand SSRI treatment of premature ejaculation: Pharmacodynamic limitations for relevant ejaculation delay and consequent solutions. J Sex Med 2(1):121–131. https://doi.org/10.1111/j.1743-6109.2005.20112.x

    Article  CAS  PubMed  Google Scholar 

  74. Dekeyne A, Mannoury La Cour C, Gobert A, Brocco M, Lejeune F, Serres F, Sharp T, Daszuta A, Soumier A, Papp M, Rivet JM, Flik G, Cremers TI, Muller O, Lavielle G, Millan MJ (2008) S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacology 199(4):549–568. https://doi.org/10.1007/s00213-008-1177-9

    Article  CAS  PubMed  Google Scholar 

  75. Dorevitch A, Davis H (1994) Fluvoxamine-associated sexual dysfunction. Ann Pharmacother 28(7-8):872–874. https://doi.org/10.1177/106002809402800709

    Article  CAS  PubMed  Google Scholar 

  76. Hsu JH, Shen WW (1995) Male sexual side effects associated with antidepressants: a descriptive clinical study of 32 patients. Int J Psychiatry Med 25(2):191–201. https://doi.org/10.2190/1DHU-Y7L7-9GKG-V7WV

    Article  CAS  PubMed  Google Scholar 

  77. Montejo-Gonzalez AL, Liorca G, Izquierdo JA, Ledesma A, Bousono M, Calcedo A, Carrasco JL, Ciudad J, Daniel E, de la Gandara J, Derecho J, Franco M, Gomez MJ, Macias JA, Martin T, Perez V, Sanchez JM, Sanchez S, Vicens E (1997) SSRI-induced sexual dysfunction: fluoxetine, paroxetine, sertraline, and fluvoxamine in a prospective, multicenter, and descriptive clinical study of 344 patients. J Sex Marital Ther 23(3):176–194. https://doi.org/10.1080/00926239708403923

    Article  CAS  PubMed  Google Scholar 

  78. Lee KU, Lee YM, Nam JM, Lee HK, Kweon YS, Lee CT, Jun TY (2010) Antidepressant-induced sexual dysfunction among newer antidepressants in a naturalistic setting. Psychiatry Investig 7(1):55–59. https://doi.org/10.4306/pi.2010.7.1.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kennedy SH, Eisfeld BS, Dickens SE, Bacchiochi JR, Bagby RM (2000) Antidepressant-induced sexual dysfunction during treatment with moclobemide, paroxetine, sertraline, and venlafaxine. J Clin Psychiatry 61(4):276–281. https://doi.org/10.4088/JCP.v61n0406

    Article  CAS  PubMed  Google Scholar 

  80. Nieuwstraten CE, Dolovich LR (2001) Bupropion versus selective serotonin-reuptake inhibitors for treatment of depression. Ann Pharmacother 35(12):1608–1613. https://doi.org/10.1345/aph.1A099

    Article  CAS  PubMed  Google Scholar 

  81. Clayton AH, Pradko JF, Croft HA, Brendan Montano C, Leadbetter RA, Bolden-Watson C, Bass KI, Donahue RMJ, Jamerson BD, Metz A (2002) Prevalence of sexual dysfunction among newer antidepressants. J Clin Psychiatry 63(4):357–366. https://doi.org/10.4088/JCP.v63n0414

    Article  PubMed  Google Scholar 

  82. Kennedy SH, McCann SM, Masellis M, McIntyre RS, Raskin J, McKay G, Baker GB (2002) Combining bupropion SR with venlafaxine, paroxetine, or fluoxetine: a preliminary report on pharmacokinetic, therapeutic, and sexual dysfunction effects. J Clin Psychiatry 63(3):181–186. https://doi.org/10.4088/JCP.v63n0302

    Article  CAS  PubMed  Google Scholar 

  83. Gobert A, Rivet JM, Cistarelli L, Melon C, Millan MJ (1999) Buspirone modulates basal and fluoxetine-stimulated dialysate levels of dopamine, noradrenaline and serotonin in the frontal cortex of freely moving rats: activation of serotonin(1A) receptors and blockade of α2-adrenergic receptors underlie its actions. Neuroscience 93(4):1251–1262. https://doi.org/10.1016/S0306-4522(99)00211-0

    Article  CAS  PubMed  Google Scholar 

  84. Rickels K, Rynn M (2002) Pharmacotherapy of generalized anxiety disorder. J Clin Psychiatry 63(Suppl 1):9–16

    CAS  PubMed  Google Scholar 

  85. Gitlin M (2003) Sexual dysfunction with psychotropic drugs. Expert Opin Pharmacother 4(12):2259–2269. https://doi.org/10.1517/14656566.4.12.2259

    Article  CAS  PubMed  Google Scholar 

  86. Landén M, Eriksson E, Ågren H, Fahlén T (1999) Effect of buspirone on sexual dysfunction in depressed patients treated with selective serotonin reuptake inhibitors. J Clin Psychopharmacol 19(3):268–271. https://doi.org/10.1097/00004714-199906000-00012

    Article  PubMed  Google Scholar 

  87. Landén M, Högberg P, Thase ME (2005) Incidence of sexual side effects in refractory depression during treatment with citalopram or paroxetine. J Clin Psychiatry 66(1):100–106. https://doi.org/10.4088/JCP.v66n0114

    Article  PubMed  Google Scholar 

  88. Mathes CW, Smith ER, Popa BR, Davidson JM (1990) Effects of intrathecal and systemic administration of buspirone on genital reflexes and mating behavior in male rats. Pharmacol Biochem Behav 36(1):63–68. https://doi.org/10.1016/0091-3057(90)90126-3

    Article  CAS  PubMed  Google Scholar 

  89. Uphouse L, Caldarola-Pastuszka M, Montanez S (1992) Intracerebral actions of the 5-HT1A agonists, 8-OH-DPAT and buspirone and of the 5-HT1A partial agonist/antagonist, NAN-190, on female sexual behavior. Neuropharmacology 31(10):969–981. https://doi.org/10.1016/0028-3908(92)90097-9

    Article  CAS  PubMed  Google Scholar 

  90. Fernández-Guasti A, Roldán-Roldán G, Larsson K (1991) Anxiolytics reverse the acceleration of ejaculation resulting from enforced Intercopulatory intervals in rats. Behav Neurosci 105(2):230–240. https://doi.org/10.1037/0735-7044.105.2.230

    Article  PubMed  Google Scholar 

  91. Skolnick P, Krieter P, Tizzano J, Basile A, Popik P, Czobor P, Lippa A (2006) Preclinical and clinical pharmacology of DOV 216,303, a “triple” reuptake inhibitor. CNS Drug Rev 12(2):123–134. https://doi.org/10.1111/j.1527-3458.2006.00123.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Millan MJ (2009) Dual- and triple-acting agents for treating Core and co-morbid symptoms of major depression: novel concepts, new drugs. Neurotherapeutics 6(1):53–77. https://doi.org/10.1016/j.nurt.2008.10.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Millan MJ (2005) Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie 60(5):441–460. https://doi.org/10.2515/therapie:2005065

    Article  PubMed  Google Scholar 

  94. Millan MJ, Brocco M, Gobert A, Dekeyne A (2005) Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology 177(4):448–458. https://doi.org/10.1007/s00213-004-1962-z

    Article  CAS  PubMed  Google Scholar 

  95. Nic Dhonnchadha BA, Ripoll N, Clénet F, Hascoët M, Bourin M (2005) Implication of 5-HT2 receptor subtypes in the mechanism of action of antidepressants in the four plates test. Psychopharmacology 179(2):418–429. https://doi.org/10.1007/s00213-004-2044-y

    Article  CAS  PubMed  Google Scholar 

  96. Zupancic M, Guilleminault C (2006) Agomelatine: a preliminary review of a new antidepressant. CNS Drugs 20(12):981–992. https://doi.org/10.2165/00023210-200620120-00003

    Article  CAS  PubMed  Google Scholar 

  97. Foreman MM, Fuller RW, Nelson DL, Calligaro DO, Kurz KD, Misner JW, Garbrecht WL, Parli CJ (1992) Preclinical studies on LY237733, a potent and selective serotonergic antagonist. J Pharmacol Exp Ther 260(1):51–57

    CAS  PubMed  Google Scholar 

  98. Waldinger MD, Olivier B (2005) Animal models of premature and retarded ejaculation. World J Urol 23(2):115–118. https://doi.org/10.1007/s00345-004-0493-x

    Article  PubMed  Google Scholar 

  99. Chan JSW, Waldinger MD, Olivier B, Oosting RS (2010) Drug-induced sexual dysfunction in rats. Curr Protoc Neurosci. Chapter 9:Unit 9.34. https://doi.org/10.1002/0471142301.ns0934s53

  100. Bijlsma EY, Chan JSW, Olivier B, Veening JG, Millan MJ, Waldinger MD, Oosting RS (2014) Sexual side effects of serotonergic antidepressants: mediated by inhibition of serotonin on central dopamine release? Pharmacol Biochem Behav. https://doi.org/10.1016/j.pbb.2013.10.004

  101. Oosting RS, Chan JS, Olivier B, Banerjee P, Choi YK, Tarazi F (2016) Differential effects of vilazodone versus citalopram and paroxetine on sexual behaviors and serotonin transporter and receptors in male rats. Psychopharmacology 233(6):1025–1034. https://doi.org/10.1007/s00213-015-4198-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rothschild AJ (1995) Selective serotonin reuptake inhibitor-induced sexual dysfunction: efficacy of a drug holiday. Am J Psychiatry 152(10):1514–1516. https://doi.org/10.1176/ajp.152.10.1514

    Article  CAS  PubMed  Google Scholar 

  103. Bobes J, González MP, Bascarán MT, Clayton A, Garcia M, Rico-Villade Moros F, Banús S (2002) Evaluating changes in sexual functioning in depressed patients: sensitivity to change of the CSFQ. J Sex Marital Ther 28(2):93–103. https://doi.org/10.1080/00926230252851852

    Article  CAS  PubMed  Google Scholar 

  104. Baldwin D, Hutchison J, Donaldson K, Shaw B, Smithers A (2008) Selective serotonin re-uptake inhibitor treatment-emergent sexual dysfunction: randomized double-blind placebo-controlled parallel-group fixed-dose study of a potential adjuvant compound, VML-670. J Psychopharmacol 22(1):55–63. https://doi.org/10.1177/0269881107078490

    Article  CAS  PubMed  Google Scholar 

  105. Gartlehner G, Thieda P, Hansen RA, Gaynes BN, DeVeaugh-Geiss A, Krebs EE, Lohr KN (2008) Comparative risk for harms of second-generation antidepressants: a systematic review and meta-analysis. Drug Saf 31(10):851–865. https://doi.org/10.2165/00002018-200831100-00004

    Article  CAS  PubMed  Google Scholar 

  106. Waldinger MD, Olivier B (1998) Selective serotonin reuptake inhibitor-induced sexual dysfunction: clinical and research considerations. Int Clin Psychopharmacol 13(Suppl 6):S27–S33. https://doi.org/10.1097/00004850-199802002-00005

    Article  PubMed  Google Scholar 

  107. Remick RA (2002) Diagnosis and management of depression in primary care: a clinical update and review. CMAJ 167:1253–1260

    PubMed  PubMed Central  Google Scholar 

  108. Manning C, Marr J (2003) “Real-life burden of depression” surveys - GP and patient perspectives on treatment and management of recurrent depression. Curr Med Res Opin 19(6):526–531. https://doi.org/10.1185/030079903125002117

    Article  PubMed  Google Scholar 

  109. Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51(3):215–235. https://doi.org/10.1016/S0165-0327(98)00221-3

    Article  CAS  PubMed  Google Scholar 

  110. Shelton RC (2019) Serotonin and norepinephrine reuptake inhibitors. In: Handbook of experimental pharmacology. Springer Nature, Switzerland, pp 145–180

    Google Scholar 

  111. Kiliç S, Ergin H, Baydinç YC (2005) Venlafaxine extended release for the treatment of patients with premature ejaculation: a pilot, single-blind, placebo-controlled, fixed-dose crossover study on short-term administration of an antidepressant drug. Int J Androl 28(1):47–52. https://doi.org/10.1111/j.1365-2605.2005.00507.x

    Article  CAS  PubMed  Google Scholar 

  112. Safarinejad MR (2008) Safety and efficacy of venlafaxine in the treatment of premature ejaculation: a double-blind, placebo-controlled, fixed-dose, randomised study. Andrologia 40(1):49–55. https://doi.org/10.1111/j.1439-0272.2008.00813.x

    Article  CAS  PubMed  Google Scholar 

  113. Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S (2004) A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim Care Companion J Clin Psychiatry 6(4):159–166. https://doi.org/10.4088/pcc.v06n0403

    Article  PubMed  PubMed Central  Google Scholar 

  114. Olivier JDA, de Jong TR, Jos Dederen P, van Oorschot R, Heeren D, Pattij T, Waldinger MD, Coolen LM, Cools AR, Olivier B, Veening JG (2007) Effects of acute and chronic apomorphine on sex behavior and copulation-induced neural activation in the male rat. Eur J Pharmacol 576(1-3):61–76. https://doi.org/10.1016/j.ejphar.2007.08.019

    Article  CAS  PubMed  Google Scholar 

  115. Fatemi SH, Emamian ES, Kist DA (1999) Venlafaxine and bupropion combination therapy in a case of treatment- resistant depression. Ann Pharmacother 33(6):701–703. https://doi.org/10.1345/aph.18249

    Article  CAS  PubMed  Google Scholar 

  116. Skolnick P, Popik P, Janowsky A, Beer B, Lippa AS (2003) Antidepressant-like actions of DOV 21,947: a “triple” reuptake inhibitor. Eur J Pharmacol 461(2-3):99–104. https://doi.org/10.1016/S0014-2999(03)01310-4

    Article  CAS  PubMed  Google Scholar 

  117. Paterson NE, Balci F, Campbell U, Olivier BE, Hanania T (2011) The triple reuptake inhibitor DOV216,303 exhibits limited antidepressant-like properties in the differential reinforcement of low-rate 72-second responding assay, likely due to dopamine reuptake inhibition. J Psychopharmacol 25:1357–1364

    Article  CAS  PubMed  Google Scholar 

  118. Breuer ME, Chan JSW, Oosting RS, Groenink L, Korte SM, Campbell U, Schreiber R, Hanania T, Snoeren EMS, Waldinger M, Olivier B (2008) The triple monoaminergic reuptake inhibitor DOV 216,303 has antidepressant effects in the rat olfactory bulbectomy model and lacks sexual side effects. Eur Neuropsychopharmacol 18(12):908–916. https://doi.org/10.1016/j.euroneuro.2008.07.011

    Article  CAS  PubMed  Google Scholar 

  119. Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, Rivet JM, Cussac D (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306(3):954–956. https://doi.org/10.1124/jpet.103.051797

    Article  CAS  PubMed  Google Scholar 

  120. Michelson D, Bancroft J, Targum S, Yongman K, Tepner R (2000) Female sexual dysfunction associated with antidepressant administration: a randomized, placebo-controlled study of pharmacologic intervention. Am J Psychiatry 157(2):239–243. https://doi.org/10.1176/appi.ajp.157.2.239

    Article  CAS  PubMed  Google Scholar 

  121. Padoin MJ, Lucion AB (1995) The effect of testosterone and DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) on male sexual behavior of rats. Eur J Pharmacol 277:1–6

    Article  CAS  PubMed  Google Scholar 

  122. Sanchez C, Asin KE, Artigas F (2015) Vortioxetine, a novel antidepressant with multimodal activity: review of preclinical and clinical data. Pharmacol Ther 145:43–57. https://doi.org/10.1016/j.pharmthera.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  123. Li Y, Pehrson AL, Oosting RS, Gulinello M, Olivier B, Sanchez C (2017) A study of time- and sex-dependent effects of vortioxetine on rat sexual behavior: possible roles of direct receptor modulation. Neuropharmacology 121:89–99. https://doi.org/10.1016/j.neuropharm.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  124. Jacobsen PL, Mahableshwarkar AR, Chen Y, Chrones L, Clayton AH (2015) Effect of vortioxetine vs. escitalopram on sexual functioning in adults with well-treated major depressive disorder experiencing ssri-induced sexual dysfunction. J Sex Med 12(10):2036–2048. https://doi.org/10.1111/jsm.12980

    Article  CAS  PubMed  Google Scholar 

  125. Jacobsen P, Zhong W, Nomikos G, Clayton A (2019) Paroxetine, but not Vortioxetine, impairs sexual functioning compared with placebo in healthy adults: a randomized, controlled trial. J Sex Med 16(10):1638–1649. https://doi.org/10.1016/j.jsxm.2019.06.018

    Article  PubMed  Google Scholar 

  126. Dawson LA, Watson JM (2009) Vilazodone: a 5-HT1A receptor agonist/serotonin transporter inhibitor for the treatment of affective disorders. CNS Neurosci Ther 15(2):107–117. https://doi.org/10.1111/j.1755-5949.2008.00067.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Clayton AH, Kennedy SH, Edwards JB, Gallipoli S, Reed CR (2013) The effect of vilazodone on sexual function during the treatment of major depressive disorder. J Sex Med 10(10):2465–2476. https://doi.org/10.1111/jsm.12004

    Article  CAS  PubMed  Google Scholar 

  128. Clayton AH, Gommoll C, Chen D, Nunez R, Mathews M (2015) Sexual dysfunction during treatment of major depressive disorder with vilazodone, citalopram, or placebo: results from a phase IV clinical trial. Int Clin Psychopharmacol 30(4):216–223. https://doi.org/10.1097/YIC.0000000000000075

    Article  PubMed  PubMed Central  Google Scholar 

  129. Clayton AH, Durgam S, Li D, Chen C, Chen L, Mathews M, Gommoll CP, Szegedi A (2017) Effects of vilazodone on sexual functioning in healthy adults. Int Clin Psychopharmacol 32:27–35

    Article  PubMed  Google Scholar 

  130. Zhang L-M, Wang X-Y, Zhao N, Wang Y-L, Hu X-X, Ran Y-H, Liu Y-Q, Zhang Y-Z, Yang R-F, Li Y-F (2017) Neurochemical and behavioural effects of hypidone hydrochloride (YL-0919): a novel combined selective 5-HT reuptake inhibitor and partial 5-HT 1A agonist. Br J Pharmacol 174:769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Matthiesen T, Wöhrmann T, Coogan TP, Uragg H (1998) The experimental toxicology of tramadol: an overview. Toxicol Lett 95(1):63–71. https://doi.org/10.1016/S0378-4274(98)00023-X

    Article  CAS  PubMed  Google Scholar 

  132. Rojas-Corrales MO, Gibert-Rahola J, Micó JA (1998) Tramadol induces antidepressant-type effects in mice. Life Sci 63(12):PL175–PL180. https://doi.org/10.1016/S0024-3205(98)00369-5

    Article  CAS  PubMed  Google Scholar 

  133. Eassa BI, El-Shazly MA (2013) Safety and efficacy of tramadol hydrochloride on treatment of premature ejaculation. Asian J Androl 15(1):138–142. https://doi.org/10.1038/aja.2012.96

    Article  CAS  PubMed  Google Scholar 

  134. Yang L, Qian S, Liu H, Liu L, Pu C, Han P, Wei Q (2013) Role of tramadol in premature ejaculation: a systematic review and meta-analysis. Urol Int 91(2):197–205. https://doi.org/10.1159/000348826

    Article  CAS  PubMed  Google Scholar 

  135. Waldinger MD (2018) Drug treatment options for premature ejaculation. Expert Opin Pharmacother 19(10):1077–1085. https://doi.org/10.1080/14656566.2018.1494725

    Article  CAS  PubMed  Google Scholar 

  136. Olivier J, Esquivel Franco DC, Oosting R, Waldinger M, Sarnyai Z, Olivier B (2017) Tramadol: effects on sexual behavior in male rats are mainly caused by its 5-HT reuptake blocking effects. Neuropharmacology 116:50–58. https://doi.org/10.1016/j.neuropharm.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  137. Abdel-Hamid IA, Andersson KE, Waldinger MD, Anis TH (2016) Tramadol abuse and sexual function. Sex Med Rev 4(3):235–246. https://doi.org/10.1016/j.sxmr.2015.10.014

    Article  PubMed  Google Scholar 

  138. Smith WT, Glaudin V, Panagides J, Gilvary E (1990) Mirtazapine vs. amitriptyline vs. Placebo in the treatment of major depressive disorder. Psychopharmacol Bull 26(2):191–196

    CAS  PubMed  Google Scholar 

  139. Kent JM (2000) SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet 355(9207):911–918. https://doi.org/10.1016/S0140-6736(99)11381-3

    Article  CAS  PubMed  Google Scholar 

  140. De Boer T, Ruigt GSF, Berendsen HHG (1995) The α2-selective adrenoceptor antagonist org 3770 (mirtazapine, Remeron®) enhances noradrenergic and serotonergic transmission. Hum Psychopharmacol Clin Exp 10(Suppl 2):S107–S118. https://doi.org/10.1002/hup.470100805

    Article  Google Scholar 

  141. Benelli A, Frigeri C, Bertolini A, Genedani S (2004) Influence of mirtazapine on the sexual behavior of male rats. Psychopharmacology 171(3):250–258. https://doi.org/10.1007/s00213-003-1591-y

    Article  CAS  PubMed  Google Scholar 

  142. Boyarsky BK, Haque W, Rouleau MR, Hirschfeld RMA (1999) Sexual functioning in depressed outpatients taking mirtazapine. Depress. Anxiety 9(4):175–179. https://doi.org/10.1002/(SICI)1520-6394(1999)9:4<175::AID-DA5>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  143. Farah A (1999) Relief of SSRI-induced sexual dysfunction with mirtazapine treatment. J Clin Psychiatry 60(4):260–261. https://doi.org/10.4088/JCP.v60n0412a

    Article  CAS  PubMed  Google Scholar 

  144. Auffret M, Drapier S, Véris M (2019) New tricks for an old dog: a repurposing approach of apomorphine. Eur J Pharmacol 843:66–79

    Article  CAS  PubMed  Google Scholar 

  145. Hull EM, Lorrain DS, Du J, Matuszewich L, Lumley LA, Putnam SK, Moses J (1999) Hormone-neurotransmitter interactions in the control of sexual behavior. Behav Brain Res 105(1):105–116. https://doi.org/10.1016/S0166-4328(99)00086-8

    Article  CAS  PubMed  Google Scholar 

  146. Guadarrama-Bazante IL, Canseco-Alba A, Rodríguez-Manzo G (2014) Dopamine receptors play distinct roles in sexual behavior expression of rats with a different sexual motivational tone. Behav Pharmacol 25(7):684–694. https://doi.org/10.1097/FBP.0000000000000086

    Article  CAS  PubMed  Google Scholar 

  147. Olivier B, Soudijn W, Van Wijngaarden I (1999) The 5-HT(1A) receptor and its ligands: structure and function. Prog Drug Res 52:103–165. https://doi.org/10.1007/978-3-0348-8730-4_3

    Article  CAS  PubMed  Google Scholar 

  148. du Jardin KG, Jensen JB, Sanchez C, Pehrson AL (2014) Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism. Eur Neuropsychopharmacol 24(1):160–171. https://doi.org/10.1016/j.euroneuro.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  149. Ahlenius S, Larsson K, Wijkström A (1991) Behavioral and biochemical effects of the 5-HT1A receptor agonists flesinoxan and 8-OH-DPAT in the rat. Eur J Pharmacol 200(2-3):259–266. https://doi.org/10.1016/0014-2999(91)90580-J

    Article  CAS  PubMed  Google Scholar 

  150. Hensler JG (2003) Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci 72(15):1665–1682. https://doi.org/10.1016/S0024-3205(02)02482-7

    Article  CAS  PubMed  Google Scholar 

  151. Tanco SA, Watson NV, Gorzalka BB (1993) Lack of effects of 5-HT3 antagonists on normal and morphine-attenuated sexual behaviours in female and male rats. Experientia 49(3):238–241. https://doi.org/10.1007/BF01923532

    Article  CAS  PubMed  Google Scholar 

  152. Larsson K, Heimer L (1964) Mating behaviour of male rats after lesions in the preoptic area. Nature 202:413–414. https://doi.org/10.1038/202413a0

    Article  CAS  PubMed  Google Scholar 

  153. Christensen LW, Nance DM, Gorski RA (1977) Effects of hypothalamic and preoptic lesions on reproductive behavior in male rats. Brain Res Bull 2(2):137–141. https://doi.org/10.1016/0361-9230(77)90010-7

    Article  CAS  PubMed  Google Scholar 

  154. Van Dis H, Larsson K (1971) Induction of sexual arousal in the castrated male rat by intracranial stimulation. Physiol Behav 6(1):85–86. https://doi.org/10.1016/0031-9384(71)90021-7

    Article  PubMed  Google Scholar 

  155. Malsbury CW (1971) Facilitation of male rat copulatory behavior by electrical stimulation of the medial preoptic area. Physiol Behav 7(6):797–805. https://doi.org/10.1016/0031-9384(71)90042-4

    Article  CAS  PubMed  Google Scholar 

  156. Normandin JJ, Murphy AZ (2011) Excitotoxic lesions of the nucleus paragigantocellularis facilitate male sexual behavior but attenuate female sexual behavior in rats. Neuroscience 175:212–223. https://doi.org/10.1016/j.neuroscience.2010.11.030

    Article  CAS  PubMed  Google Scholar 

  157. Yells DP, Hendricks SE, Prendergast MA (1992) Lesions of the nucleus paragigantocellularis: effects on mating behavior in male rats. Brain Res 596(1-2):73–79. https://doi.org/10.1016/0006-8993(92)91534-L

    Article  CAS  PubMed  Google Scholar 

  158. Yells DP, Prendergast MA, Hendricks SE, Nakamura M (1994) Fluoxetine-induced inhibition of male rat copulatory behavior: modification by lesions of the nucleus paragigantocellularis. Pharmacol Biochem Behav 49(1):121–127. https://doi.org/10.1016/0091-3057(94)90465-0

    Article  CAS  PubMed  Google Scholar 

  159. Normandin JJ, Murphy AZ (2011) Serotonergic lesions of the periaqueductal gray, a primary source of serotonin to the nucleus paragigantocellularis, facilitate sexual behavior in male rats. Pharmacol Biochem Behav 98(3):369–375. https://doi.org/10.1016/j.pbb.2011.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Uphouse L, Guptarak J (2010) Serotonin and sexual behavior. In: Müller C, Jacobs B (eds) Handbook of behavioral neurobiology of serotonin, vol 21. Elsevier, Amsterdam, pp 347–365

    Chapter  Google Scholar 

  161. Bitran D, Hull EM (1987) Pharmacological analysis of male rat sexual behavior. Neurosci Biobehav Rev 11(4):365–389. https://doi.org/10.1016/S0149-7634(87)80008-8

    Article  CAS  PubMed  Google Scholar 

  162. Haensel SM, Mos J, Olivier B, Slob AK (1991) Sex behavior of male and female wistar rats affected by the serotonin agonist 8-OH-DPAT. Pharmacol Biochem Behav 40(2):221–228. https://doi.org/10.1016/0091-3057(91)90543-B

    Article  CAS  PubMed  Google Scholar 

  163. Ahlenius S, Larsson K, Svensson L, Hjorth S, Carlsson A, Lindberg P, Wikström H, Sanchez D, Arvidsson LE, Hacksell U, Nilsson JLG (1981) Effects of a new type of 5-HT receptor agonist on male rat sexual behavior. Pharmacol Biochem Behav 15(5):785–792. https://doi.org/10.1016/0091-3057(81)90023-X

    Article  CAS  PubMed  Google Scholar 

  164. Ahlenius S, Larsson K (1997) Specific involvement of central 5-HT(1A) receptors in the mediation of male rat ejaculatory behavior. Neurochem Res 22(8):1065–1070. https://doi.org/10.1023/A:1022443413745

    Article  CAS  PubMed  Google Scholar 

  165. De Jong TR, Pattij T, Veening JG, Dederen PJWC, Waldinger MD, Cools AR, Olivier B (2005) Effects of chronic paroxetine pretreatment on (±)-8-hydroxy-2-(di-n-propyl-amino)tetralin induced c-fos expression following sexual behavior. Neuroscience 134(4):1351–1361. https://doi.org/10.1016/j.neuroscience.2005.05.012

    Article  CAS  PubMed  Google Scholar 

  166. De Jong TR, Pattij T, Veening JG, Waldinger MD, Cools AR, Olivier B (2005) Effects of chronic selective serotonin reuptake inhibitors on 8-OH-DPAT-induced facilitation of ejaculation in rats: comparison of fluvoxamine and paroxetine. Psychopharmacology 179(2):509–515. https://doi.org/10.1007/s00213-005-2186-6

    Article  CAS  PubMed  Google Scholar 

  167. Esquivel-Franco DC, de Boer SF, Waldinger M, Olivier B, Olivier JDA (2020) Pharmacological studies on the role of 5-HT1A receptors in male sexual behavior of wildtype and serotonin transporter knockout rats. Front Behav Neurosci 14:40. https://doi.org/10.3389/fnbeh.2020.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chan JSW, Snoeren EMS, Cuppen E, Waldinger MD, Olivier B, Oosting RS (2011) The serotonin transporter plays an important role in male sexual behavior: a study in serotonin transporter knockout rats. J Sex Med 8(1):97–108. https://doi.org/10.1111/j.1743-6109.2010.01961.x

    Article  CAS  PubMed  Google Scholar 

  169. Fernández-Guasti A, Escalante A (1991) Role of presynaptic serotonergic receptors on the mechanism of action of 5-HT1A and 5-HT1B agonists on masculine sexual behaviour: physiological and pharmacological implications. J Neural Transm 85(2):95–107. https://doi.org/10.1007/BF01244702

    Article  Google Scholar 

  170. Hull EM, Muschamp JW, Sato S (2004) Dopamine and serotonin: influences on male sexual behavior. Physiol Behav 83(2):291–307. https://doi.org/10.1016/j.physbeh.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  171. Wise RA, Bozarth MA (1985) Brain mechanisms of drug reward and euphoria. Psychiatr Med 3(4):445–460

    CAS  PubMed  Google Scholar 

  172. Hull EM, Dominguez JM (2007) Sexual behavior in male rodents. Horm Behav 52(1):45–55. https://doi.org/10.1016/j.yhbeh.2007.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Melis MR, Argiolas A (1995) Dopamine and sexual behavior. Neurosci Biobehav Rev 19(1):19–38. https://doi.org/10.1016/0149-7634(94)00020-2

    Article  CAS  PubMed  Google Scholar 

  174. Waldinger MD, Quinn P, Dilleen M, Mundayat R, Schweitzer DH, Boolell M (2005) A multinational population survey of intravaginal ejaculation latency time. J Sex Med 2(4):492–497. https://doi.org/10.1111/j.1743-6109.2005.00070.x

    Article  PubMed  Google Scholar 

  175. Waldinger MD, McIntosh J, Schweitzer DH (2009) A five-nation survey to assess the distribution of the intravaginal ejaculatory latency time among the general male population. J Sex Med 6(10):2888–2895. https://doi.org/10.1111/j.1743-6109.2009.01392.x

    Article  PubMed  Google Scholar 

  176. Berendsen HHG, Jenck F, Broekkamp CLE (1989) Selective activation of 5HT1A receptors induces lower lip retraction in the rat. Pharmacol Biochem Behav 33(4):821–827. https://doi.org/10.1016/0091-3057(89)90477-2

    Article  CAS  PubMed  Google Scholar 

  177. Berendsen HHG, Broekkamp CLE, Van Delft AML (1990) Antagonism of 8-OH-DPAT-induced behaviour in rats. Eur J Pharmacol 187(1):97–103. https://doi.org/10.1016/0014-2999(90)90344-6

    Article  CAS  PubMed  Google Scholar 

  178. Sura A, Overstreet DH, Marson L (2001) Selectively bred male rat lines differ in naïve and experienced sexual behavior. Physiol Behav 72(1-2):13–20. https://doi.org/10.1016/S0031-9384(00)00300-0

    Article  CAS  PubMed  Google Scholar 

  179. Hurwitz ZE, Riley AL (2011) The differential expression of male sexual behavior in the Lewis, Fischer and Sprague-Dawley rat strains. Learn Behav 39(1):36–45. https://doi.org/10.3758/s13420-010-0006-2

    Article  PubMed  Google Scholar 

  180. Overstreet DH, Rezvani AH, Pucilowski O, Gause L, Janowsky DS (1994) Rapid selection for serotonin-1a sensitivity in rats. Psychiatr Genet 4(1):57–62. https://doi.org/10.1097/00041444-199421000-00008

    Article  CAS  PubMed  Google Scholar 

  181. Overstreet DH, Rezvani AM, Knapp DJ, Crews FT, Janowsky DS (1996) Further selection of rat lines differing in 5-HT-1A receptor sensitivity: behavioral and functional correlates. Psychiatr Genet 6(3):107–117. https://doi.org/10.1097/00041444-199623000-00002

    Article  CAS  PubMed  Google Scholar 

  182. Knapp DJ, Overstreet DH, Crews FT (1998) Brain 5-HT(1A) receptor autoradiography and hypothermic responses in rats bred for differences in 8-OH-DPAT sensitivity. Brain Res 782(1-2):1–10. https://doi.org/10.1016/S0006-8993(97)01127-X

    Article  CAS  PubMed  Google Scholar 

  183. Schijven D, Sousa VC, Roelofs J, Olivier B, Olivier JDA (2014) Serotonin 1A receptors and sexual behavior in a genetic model of depression. Pharmacol Biochem Behav 121:82–87. https://doi.org/10.1016/j.pbb.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  184. Overstreet DH, Wegener G (2013) The flinders sensitive line rat model of depression-25 years and still producing. Pharmacol Rev 65(1):143–155. https://doi.org/10.1124/pr.111.005397

    Article  CAS  PubMed  Google Scholar 

  185. El Khoury A, Gruber SHM, Mørk A, Mathé AA (2006) Adult life behavioral consequences of early maternal separation are alleviated by escitalopram treatment in a rat model of depression. Prog Neuropsychopharmacol Biol Psychiatry 30(3):535–540. https://doi.org/10.1016/j.pnpbp.2005.11.011

    Article  CAS  PubMed  Google Scholar 

  186. Eriksson TM, Delagrange P, Spedding M, Popoli M, Mathé AA, Ögren SO, Svenningsson P (2012) Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/arc signaling in restoration. Mol Psychiatry 17(2):173–184. https://doi.org/10.1038/mp.2010.131

    Article  CAS  PubMed  Google Scholar 

  187. Burns-Cusato M, Scordalakes EM, Rissman EF (2004) Of mice and missing data: what we know (and need to learn) about male sexual behavior. Physiol Behav 83(2):217–232. https://doi.org/10.1016/j.physbeh.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  188. Esquivel-Franco DC, Olivier B, Waldinger MD, Gutiérrez-Ospina G, Olivier JDA (2018) Tramadol’s inhibitory effects on sexual behavior: pharmacological studies in serotonin transporter knockout rats. Front Pharmacol 9:676. https://doi.org/10.3389/fphar.2018.00676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kennedy SH, Rizvi S (2009) Sexual dysfunction, depression, and the impact of antidepressants. J Clin Psychopharmacol 29(2):157–164. https://doi.org/10.1097/JCP.0b013e31819c76e9

    Article  CAS  PubMed  Google Scholar 

  190. Meyer JH (2007) Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci 32(2):86–102. https://doi.org/10.1016/S1180-4882(07)50013-2

    Article  PubMed  PubMed Central  Google Scholar 

  191. Homberg JR, Olivier JDA, Smits BMG, Mul JD, Mudde J, Verheul M, Nieuwenhuizen OFM, Cools AR, Ronken E, Cremers T, Schoffelmeer ANM, Ellenbroek BA, Cuppen E (2007) Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system. Neuroscience 146(4):1662–1676. https://doi.org/10.1016/j.neuroscience.2007.03.030

    Article  CAS  PubMed  Google Scholar 

  192. Matuszcyk JV, Larsson K, Eriksson E (1998) The selective serotonin reuptake inhibitor fluoxetine reduces sexual motivation in male rats. Pharmacol Biochem Behav 60(2):527–532. https://doi.org/10.1016/S0091-3057(98)00010-0

    Article  CAS  Google Scholar 

  193. Geng H, Peng D, Huang Y, Tang D, Gao J, Zhang Y, Zhang X (2019) Changes in sexual performance and biochemical characterisation of functional neural regions: a study in serotonin transporter knockout male rats. Andrologia 51(7):e13291. https://doi.org/10.1111/and.13291

    Article  CAS  PubMed  Google Scholar 

  194. Olivier JDA, Olivier B (2020) Antidepressants and sexual dysfunction: translational aspects. Curr Sex Health Rep 11(156–166):121–140

    Google Scholar 

  195. de Jong TR, Pattij T, Veening JG, Dederen PJWC, Waldinger MD, Cools AR, Olivier B (2005) Citalopram combined with WAY 100635 inhibits ejaculation and ejaculation-related Fos immunoreactivity. Eur J Pharmacol 509:49–59

    Article  CAS  PubMed  Google Scholar 

  196. Looney C, Thor KB, Ricca D, Marson L (2005) Differential effects of simultaneous or sequential administration of paroxetine and WAY-100,635 on ejaculatory behavior. Pharmacol Biochem Behav 82:427–433

    Article  CAS  PubMed  Google Scholar 

  197. Sniecikowska J, Newman-Tancredi A, Kolaczkowski M (2019) From receptor selectivity to functional selectivity: the rise of biased Agonism in 5-HT1A receptor drug discovery. Curr Top Med Chem 19(26):2393–2420. https://doi.org/10.2174/1568026619666190911122040

    Article  CAS  PubMed  Google Scholar 

  198. Garcia-Garcia AL, Newman-Tancredi A, Leonardo ED (2014) P5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology 231(4):623–636. https://doi.org/10.1007/s00213-013-3389-x

    Article  CAS  PubMed  Google Scholar 

  199. Hennies HH, Friderichs E, Schneider J (1988) Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. Arzneimittelforschung 38(7):877–880

    CAS  PubMed  Google Scholar 

  200. Frink MC, Hennies HH, Englberger W, Haurand M, Wilffert B (1996) Influence of tramadol on neurotransmitter systems of the rat brain. Arzneimittelforschung 46(11):1029–1036

    CAS  PubMed  Google Scholar 

  201. Bar-Or D, Salottolo KM, Orlando A, Winkler JV (2012) A randomized double-blind, placebo-controlled multicenter study to evaluate the efficacy and safety of two doses of the tramadol orally disintegrating tablet for the treatment of premature ejaculation within less than 2 minutes. Eur Urol 61(4):736–743. https://doi.org/10.1016/j.eururo.2011.08.039

    Article  CAS  PubMed  Google Scholar 

  202. Adinolfi A, Zelli S, Leo D, Carbone C, Mus L, Illiano P, Alleva E, Gainetdinov RR, Adriani W (2019) Behavioral characterization of DAT-KO rats and evidence of asocial-like phenotypes in DAT-HET rats: the potential involvement of norepinephrine system. Behav Brain Res 359:516–527. https://doi.org/10.1016/j.bbr.2018.11.028

    Article  CAS  PubMed  Google Scholar 

  203. Cinque S, Zoratto F, Poleggi A, Leo D, Cerniglia L, Cimino S, Tambelli R, Alleva E, Gainetdinov RR, Laviola G, Adriani W (2018) Behavioral phenotyping of dopamine transporter knockout rats: compulsive traits, motor stereotypies, and anhedonia. Front. Psychiatry 9:43. https://doi.org/10.3389/fpsyt.2018.00043

    Article  PubMed  PubMed Central  Google Scholar 

  204. Leo D, Sukhanov I, Zoratto F, Illiano P, Caffino L, Sanna F, Messa G, Emanuele M, Esposito A, Dorofeikova M, Budygin EA, Mus L, Efimova E, Niello M, Espinoza S, Sotnikova TD, Hoener MC, Laviola G, Fumagalli F, Adriani W, Gainetdinov RR (2018) Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats. J Neurosci 38(8):1959–1972. https://doi.org/10.1523/JNEUROSCI.1931-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Sanna F, Bratzu J, Serra MP, Leo D, Quartu M, Boi M, Espinoza S, Gainetdinov RR, Melis MR, Argiolas A (2020) Altered sexual behavior in dopamine transporter (DAT) knockout male rats: a behavioral, Neurochemical and Intracerebral Microdialysis Study. Front Behav Neurosci 14:58. https://doi.org/10.3389/fnbeh.2020.00058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Frohmader KS, Pitchers KK, Balfour ME, Coolen LM (2010) Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models. Horm Behav 58(1):149–162. https://doi.org/10.1016/j.yhbeh.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  207. Pfaus JG, Wilkins MF, DiPietro N, Benibgui M, Toledano R, Rowe A, Couch MC (2010) Inhibitory and disinhibitory effects of psychomotor stimulants and depressants on the sexual behavior of male and female rats. Horm Behav 58(1):163–176. https://doi.org/10.1016/j.yhbeh.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  208. Nathan SG (1986) The epidemiology of the DSM-III psychosexual dysfunctions. J Sex Marital Ther 12(4):267–281. https://doi.org/10.1080/00926238608415413

    Article  CAS  PubMed  Google Scholar 

  209. Jannini EA, Lenzi A (2005) Ejaculatory disorders: epidemiology and current approaches to definition, classification and subtyping. World J Urol 23(2):68–75. https://doi.org/10.1007/s00345-004-0486-9

    Article  PubMed  Google Scholar 

  210. Perelman MA, Rowland DL (2006) Retarded ejaculation. World J Urol 24(6):645–652. https://doi.org/10.1007/s00345-006-0127-6

    Article  PubMed  Google Scholar 

  211. Di Sante S, Mollaioli D, Gravina GL, Ciocca G, Limoncin E, Carosa E, Lenzi A, Jannini EA (2016) Epidemiology of delayed ejaculation. Transl Androl Urol 5(4):541–548. https://doi.org/10.21037/tau.2016.05.10

    Article  PubMed  PubMed Central  Google Scholar 

  212. Olivier B, Van Oorschot R, Waldinger MD (1998) Serotonin, serotonergic receptors, selective serotonin reuptake inhibitors and sexual behaviour. Int Clin Psychopharmacol 13(Suppl 6):S9–S14. https://doi.org/10.1097/00004850-199807006-00003

    Article  PubMed  Google Scholar 

  213. Abdel-Hamid IA, Ali OI (2018) Delayed ejaculation: pathophysiology, diagnosis, and treatment. World J Mens Health 36(1):22–40. https://doi.org/10.5534/wjmh.17051

    Article  PubMed  Google Scholar 

  214. Chen J (2016) The pathophysiology of delayed ejaculation. Transl Androl Urol 5(4):549–562. https://doi.org/10.21037/tau.2016.05.03

    Article  PubMed  PubMed Central  Google Scholar 

  215. Otani T (2019) Clinical review of ejaculatory dysfunction. Reprod Med Biol 18(4):331–343. https://doi.org/10.1002/rmb2.12289

    Article  PubMed  PubMed Central  Google Scholar 

  216. Piche K, Mann U, Patel P (2020) Treatment of delayed ejaculation. Curr Sex Heal Rep 36(1):22–40. https://doi.org/10.1007/s11930-020-00287-z

    Article  Google Scholar 

  217. Sharp T, Barnes NM (2020) Central 5-HT receptors and their function; present and future. Neuropharmacology 177:108155. https://doi.org/10.1016/j.neuropharm.2020.108155

    Article  CAS  PubMed  Google Scholar 

  218. De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G (2020) Constitutive activity of 5-HT receptors: factual analysis. Neuropharmacology 168:107967. https://doi.org/10.1016/j.neuropharm.2020.107967

    Article  CAS  PubMed  Google Scholar 

  219. de Almeida Kiguti LR, Pacheco TL, Antunes E, de G Kempinas W (2020) Lorcaserin administration has pro-ejaculatory effects in rats via 5-HT2C receptors activation: a putative pharmacologic strategy to delayed ejaculation? J Sex Med 17(6):1060–1071. https://doi.org/10.1016/j.jsxm.2020.02.027

    Article  CAS  PubMed  Google Scholar 

  220. Olivier JDA, Franco DCE, Waldinger MD, Olivier B (2017) Sexual dysfunction, depression and antidepressants: a translational approach. In: Olivier B (ed) Sexual dysfunction. IntechOpen, London, pp 59–76

    Google Scholar 

  221. Oosting RS, Chan JSW, Olivier B, Banerjee P (2016) Vilazodone does not inhibit sexual behavior in male rats in contrast to paroxetine: a role for 5-HT1A receptors? Neuropharmacology 107:271–277. https://doi.org/10.1016/j.neuropharm.2016.03.045

    Article  CAS  PubMed  Google Scholar 

  222. Olivier B, Mos J (1991) Animal psychobiology. In: Archer S, Hansen T (eds) Behavioural biology: neuroendocrine axis. Lawrence Erlbaum, (Hillsdale, New Jersey), pp 207–227

    Google Scholar 

  223. Anderson EE (1936) Consistency of tests of copulatory frequency in the male albino rat. J Comp Psychol 21(3):447–459. https://doi.org/10.1037/h0054857

    Article  Google Scholar 

  224. Beach FA (1938) Techniques useful in studying the sex behavior of the rat. J Comp Psychol 26(2):355–359. https://doi.org/10.1037/h0062437

    Article  Google Scholar 

  225. Beach FA (1955) Characteristics of masculine sex drive. In: Nebraska symposium on motivation. University of Nebraska Press, Lincoln, pp 1–32

    Google Scholar 

  226. Portillo W, Díaz NF, Cabrera EA, Fernández-Guasti A, Paredes RG (2006) Comparative analysis of immunoreactive cells for androgen receptors and oestrogen receptor α in copulating and non-copulating male rats. J Neuroendocrinol 18(3):168–176. https://doi.org/10.1111/j.1365-2826.2005.01401.x

    Article  CAS  PubMed  Google Scholar 

  227. Portillo W, Díaz NF, Retana-Márquez S, Paredes RG (2006) Olfactory, partner preference and Fos expression in the vomeronasal projection pathway of sexually sluggish male rats. Physiol Behav 88(4-5):389–397. https://doi.org/10.1016/j.physbeh.2006.04.023

    Article  CAS  PubMed  Google Scholar 

  228. De Gasperín-Estrada GP, Camacho FJ, Paredes RG (2008) Olfactory discrimination and incentive value of non copulating and sexually sluggish male rats. Physiol Behav 93(4-5):742–747. https://doi.org/10.1016/j.physbeh.2007.11.027

    Article  CAS  PubMed  Google Scholar 

  229. Antonio-Cabrera E, Paredes RG (2012) Effects of chronic estradiol or testosterone treatment upon sexual behavior in sexually sluggish male rats. Pharmacol Biochem Behav 101(3):336–341. https://doi.org/10.1016/j.pbb.2012.01.021

    Article  CAS  PubMed  Google Scholar 

  230. Shimomi Y, Kondo Y (2020) Blunt olfaction in sexually sluggish male rats. Exp Anim 69(4):441–447. https://doi.org/10.1538/expanim.19-0161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Xia JD, Chen J, Sun HJ, Zhou LH, Zhu GQ, Chen Y, Dai YT (2017) Centrally mediated ejaculatory response via sympathetic outflow in rats: role of N-methyl-D-aspartic acid receptors in paraventricular nucleus. Andrology 5(1):153–159. https://doi.org/10.1111/andr.12274

    Article  CAS  PubMed  Google Scholar 

  232. Xia JD, Chen J, Yang BB, Sun HJ, Zhu GQ, Dai YT, Yang J, Wang ZJ (2018) Differences in sympathetic nervous system activity and NMDA receptor levels within the hypothalamic paraventricular nucleus in rats with differential ejaculatory behavior. Asian J Androl 20(4):355–359. https://doi.org/10.4103/aja.aja_4_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Canseco-Alba A, Rodríguez-Manzo G (2013) Anandamide transforms noncopulating rats into sexually active animals. J Sex Med 10(3):686–693. https://doi.org/10.1111/j.1743-6109.2012.02890.x

    Article  CAS  PubMed  Google Scholar 

  234. Canseco-Alba A, Rodríguez-Manzo G (2014) Low anandamide doses facilitate male rat sexual behaviour through the activation of CB1 receptors. Psychopharmacology 231(20):4071–4080. https://doi.org/10.1007/s00213-014-3547-9

    Article  CAS  PubMed  Google Scholar 

  235. Rodríguez-Manzo G, Canseco-Alba A (2015) Biphasic effects of anandamide on behavioural responses: emphasis on copulatory behaviour. Behav Pharmacol 26(6):607–615. https://doi.org/10.1097/FBP.0000000000000154

    Article  CAS  PubMed  Google Scholar 

  236. Giuliani D, Ferrari F (1996) Differential behavioral response to dopamine D2 agonists by sexually naive, sexually active, and sexually inactive male rats. Behav Neurosci 110(4):802–808. https://doi.org/10.1037/0735-7044.110.4.802

    Article  CAS  PubMed  Google Scholar 

  237. Giuliani D, Ottani A, Ferrari F (2002) Influence of sildenafil on copulatory behaviour in sluggish or normal ejaculator male rats: a central dopamine mediated effect? Neuropharmacology 42(4):562–567. https://doi.org/10.1016/S0028-3908(01)00195-2

    Article  CAS  PubMed  Google Scholar 

  238. Trejo-Sánchez I, Pérez-Monter C, Huerta-Pacheco S, Gutiérrez-Ospina G (2020) Male ejaculatory Endophenotypes: revealing internal inconsistencies of the concept in heterosexual copulating rats. Front Behav Neurosci 14:90. https://doi.org/10.3389/fnbeh.2020.00090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Timmermans PJA (1978) Social behaviour in the rat. PhD thesis, University of Nijmegen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berend Olivier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Olivier, J.D.A., Janssen, J., Pattij, T., De Prêtre, S., Olivier, B. (2022). Antidepressants, Sexual Behavior, and Translational Models for Male Sexual Dysfunction: Development of Animal Models, Pharmacology, and Genetics. In: Kim, YK., Amidfar, M. (eds) Translational Research Methods for Major Depressive Disorder. Neuromethods, vol 179. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2083-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2083-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2082-3

  • Online ISBN: 978-1-0716-2083-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics