Skip to main content

Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer

  • Protocol
  • First Online:
DNAzymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2439))

Abstract

Single-molecule microscopy is often used to observe and characterize the conformational dynamics of nucleic acids (NA). Due to the large variety of NA structures and the challenges specific to single-molecule observation techniques, the data recorded in such experiments must be processed via multiple statistical treatments to finally yield a reliable mechanistic view of the NA dynamics. In this chapter, we propose a comprehensive protocol to analyze single-molecule trajectories in the scope of single-molecule Förster resonance energy transfer (FRET) microscopy. The suggested protocol yields the conformational states common to all molecules in the investigated sample, together with the associated conformational transition kinetics. The given model resolves states that are indistinguishable by their observed FRET signals and is estimated with 95% confidence using error calculations on FRET states and transition rate constants. In the end, a step-by-step user guide is given to reproduce the protocol with the Multifunctional Analysis Software to Handle single-molecule FRET data (MASH-FRET).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paudel B, Fiorini E, Börner R, Sigel R, Rueda D (2018) Optimal molecular crowding accelerates group II intron folding and maximizes catalysis. Proc Natl Acad Sci U S A 115:11917–11922. https://doi.org/10.1073/pnas.1806685115

    Article  CAS  Google Scholar 

  2. Zhao M, Steffen F, Börner R, Schaffer M, Sigel R, Freisinger E (2018) Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Res 46:e13. https://doi.org/10.1093/nar/gkx1100

    Article  Google Scholar 

  3. Steiner M, Rueda D, Sigel R (2009) Ca2+ induces the formation of two distinct subpopulations of group II intron molecules. Angew Chem Int Ed Engl 48:9739–9742. https://doi.org/10.1002/anie.200903809

    Article  CAS  Google Scholar 

  4. Börner R, Kowerko D, Miserachs HG, Schaffer MF, Sigel R (2016) Metal ion induced heterogeneity in RNA folding studied by smFRET. Coord Chem Rev 327:123–142. https://doi.org/10.1016/j.ccr.2016.06.002

    Article  Google Scholar 

  5. Ha T, Enderle T, Ogletree D, Chemla D, Selvin P, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93:6264–6268. https://doi.org/10.1073/pnas.93.13.6264

    Article  CAS  Google Scholar 

  6. Walter N, Harris D, Pereira M, Rueda D (2001) In the fluorescent spotlight: global and local conformational changes of small catalytic RNAs. Biopolymers 61:224–242. https://doi.org/10.1002/bip.10144

    Article  Google Scholar 

  7. Deniz A, Dahan M, Grunwell J, Ha T, Faulhaber A, Chemla D, Weiss S, Schultz P (1999) Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. Proc Natl Acad Sci U S A 96:3670–3675. https://doi.org/10.1073/pnas.96.7.3670

    Article  CAS  Google Scholar 

  8. Blanco M, Walter N (2010) Analysis of complex single-molecule FRET time trajectories. Methods Enzymol 472:153–178. https://doi.org/10.1016/S0076-6879(10)72011-5

  9. Schuler B, Hofmann H (2013) Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Curr Opin Struct Biol 23:36–47. https://doi.org/10.1016/j.sbi.2012.10.008

    Article  CAS  Google Scholar 

  10. Lamichhane R, Solem A, Black W, Rueda D (2010) Single-molecule FRET of protein-nucleic acid and protein-protein complexes: surface passivation and immobilization. Methods 52:192–200. https://doi.org/10.1016/j.ymeth.2010.06.010

    Article  CAS  Google Scholar 

  11. Zelger-Paulus S, Hadzic M, Sigel R, Börner R (2020) Encapsulation of fluorescently labeled RNAs into surface-tethered vesicles for single-molecule FRET studies in TIRF microscopy. Methods Mol Biol 2113:1–16. https://doi.org/10.1007/978-1-0716-0278-2_1

    Article  CAS  Google Scholar 

  12. Holden S, Uphoff S, Hohlbein J, Yadin D, Le R, Britton O, Kapanidis A (2010) Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophys J 99:3102–3111. https://doi.org/10.1016/j.bpj.2010.09.005

    Article  CAS  Google Scholar 

  13. Hadzic M, Börner R, König S, Kowerko D, Sigel R (2018) Reliable state identification and state transition detection in fluorescence intensity-based single-molecule förster resonance energy-transfer data. J Phys Chem B 122:6134–6147. https://doi.org/10.1021/acs.jpcb.7b12483

    Article  CAS  Google Scholar 

  14. Schmid S, Götz M, Hugel T (2016) Single-molecule analysis beyond Dwell times: demonstration and assessment in and out of equilibrium. Biophys J 111:1375–1384. https://doi.org/10.1016/j.bpj.2016.08.023

    Article  CAS  Google Scholar 

  15. Steffen F, Khier M, Kowerko D, Cunha R, Börner R, Sigel R (2020) Metal ions and sugar puckering balance single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts. Nat Commun 11:104. https://doi.org/10.1038/s41467-019-13683-4

    Article  CAS  Google Scholar 

  16. Hadzic M, Kowerko D, Börner R, Zelger-Paulus S, Sigel R (2016) Detailed analysis of complex single molecule FRET data with the software MASH. Proc SPIE 9711:971119. https://doi.org/10.1117/12.2211191

    Article  Google Scholar 

  17. König S, Hadzic M, Fiorini E, Börner R, Kowerko D, Blanckenhorn W, Sigel R (2013) BOBA FRET: bootstrap-based analysis of single-molecule FRET data. PLoS One 8:e84157. https://doi.org/10.1371/journal.pone.0084157

    Article  Google Scholar 

  18. Börner R, Kowerko D, Hadzic M, König S, Ritter M, Sigel R (2018) Simulations of camera-based single-molecule fluorescence experiments. PLoS One 13:e0195277. https://doi.org/10.1371/journal.pone.0195277

    Article  Google Scholar 

  19. Hadzic M (2021) MASH-FRET: multifunctional analysis software for handling single molecule FRET data. Matlab-based. https://rna-fretools.github.io/MASH-FRET/Getting_started.html. Accessed at November 19, 2021

  20. Cardo L, Karunatilaka K, Rueda D, Sigel R (2012) Single molecule FRET characterization of large ribozyme folding. Methods Mol Biol 848:227–251. https://doi.org/10.1007/978-1-61779-545-9_15

    Article  CAS  Google Scholar 

  21. Preus S, Hildebrandt L, Birkedal V (2016) Optimal background estimators in single-molecule FRET microscopy. Biophys J 111:1278–1286. https://doi.org/10.1016/j.bpj.2016.07.047

    Article  CAS  Google Scholar 

  22. Hellenkamp B, Schmid S, Doroshenko O, Opanasyuk O, Kühnemuth R, Rezaei A, Ambrose B, Aznauryan M, Barth A, Birkedal V, Bowen M, Chen H, Cordes T, Eilert T, Fijen C, Gebhardt C, Götz M, Gouridis G, Gratton E, Ha T, Hao P, Hanke C, Hartmann A, Hendrix J, Hildebrandt L, Hirschfeld V, Hohlbein J, Hua B, Hübner C, Kallis E, Kapanidis A, Kim J, Krainer G, Lamb D, Lee N, Lemke E, Levesque B, Levitus M, McCann J, Naredi-Rainer N, Nettels D, Ngo T, Qiu R, Robb N, Röcker C, Sanabria H, Schlierf M, Schröder T, Schuler B, Seidel H, Streit L, Thurn J, Tinnefeld P, Tyagi S, Vandenberk N, Vera A, Weninger K, Wünsch B, Yanez-Orozco I, Michaelis J, Seidel C, Craggs T, Hugel T (2018) Precision and accuracy of single-molecule FRET measurements-A multi-laboratory benchmark study. Nat Methods 15:669–676. https://doi.org/10.1038/s41592-018-0085-0

    Article  CAS  Google Scholar 

  23. Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard S, Börner R, Sung C, Cordes T, Craggs T, Deniz A, Diao J, Fei J, Gonzalez R, Gopich I, Ha T, Hanke C, Haran G, Hatzakis N, Hohng S, Hong S, Hugel T, Ingargiola A, Joo C, Kapanidis A, Kim H, Laurence T, Lee N, Lee T, Lemke E, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen T, Ploetz E, Razvag Y, Robb N, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb D, Seidel C, Weiss S (2021) FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. elife 10:e60416. https://doi.org/10.7554/eLife.60416

  24. McCann J, Choi U, Zheng L, Weninger K, Bowen M (2010) Recovering absolute FRET efficiency from single molecules: comparing methods of gamma correction. Biophys J 98:186a–187a

    Google Scholar 

  25. Hohlbein J, Craggs T, Cordes T (2014) Alternating-laser excitation: single-molecule FRET and beyond. Chem Soc Rev 43:1156–1171. https://doi.org/10.1039/c3cs60233h

    Article  CAS  Google Scholar 

  26. Lee N, Kapanidis A, Wang Y, Michalet X, Mukhopadhyay J, Ebright R, Weiss S (2005a) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88:2939–2953. https://doi.org/10.1529/biophysj.104.054114

    Article  CAS  Google Scholar 

  27. Kapanidis A, Laurence T, Lee N, Margeat E, Kong X, Weiss S (2005) Alternating-laser excitation of single molecules. Acc Chem Res 38:523–533. https://doi.org/10.1021/ar0401348

    Article  CAS  Google Scholar 

  28. Shuang B, Cooper D, Taylor J, Kisley L, Chen J, Wang W, Li C, Komatsuzaki T, Landes C (2014) Fast step transition and state identification (STaSI) for discrete single-molecule data analysis. J Phys Chem Lett 5:3157–3161. https://doi.org/10.1021/jz501435p

    Article  CAS  Google Scholar 

  29. McKinney S, Joo C, Ha T (2006) Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys J 91:1941–1951. https://doi.org/10.1529/biophysj.106.082487

    Article  CAS  Google Scholar 

  30. Bronson J, Fei J, Hofman J, Gonzalez R, Wiggins C (2009) Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys J 97:3196–3205. https://doi.org/10.1016/j.bpj.2009.09.031

    Article  CAS  Google Scholar 

  31. Zarrabi N, Schluesche P, Meisterernst M, Börsch M, Lamb D (2018) Analyzing the dynamics of single TBP-DNA-NC2 complexes using hidden Markov models. Biophys J 115:2310–2326. https://doi.org/10.1016/j.bpj.2018.11.015

    Article  CAS  Google Scholar 

  32. Schmid S, Hugel T (2018) Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties. J Chem Phys 148:123312. https://doi.org/10.1063/1.5006604

    Article  Google Scholar 

  33. Hon J, Gonzalez R (2019) Bayesian-estimated hierarchical HMMs enable robust analysis of single-molecule kinetic heterogeneity. Biophys J 116:1790–1802. https://doi.org/10.1016/j.bpj.2019.02.031

    Article  CAS  Google Scholar 

  34. Ollson M (1996) Estimation of phase-type distributions from censored data. Scand J Stat 23:443–460

    Google Scholar 

  35. Bladt M, Nielsen B (2010) Estimation of phase-type distributions. In: Bladt M, Nielsen B (eds) Matrix-exponential distributions in applied probability. Probability theory and stochastic modelling, vol 81. Springer, Boston, pp 617–701. https://doi.org/10.1007/978-1-4939-7049-0_13

    Google Scholar 

  36. Chen J, Pyle J, Piecco K, Kolomeisky A, Landes C (2016) A two-step method for smFRET data analysis. J Phys Chem B 120:7128–7132. https://doi.org/10.1021/acs.jpcb.6b05697

    Article  CAS  Google Scholar 

  37. Sammut C, Webb G (eds) (2010) Encyclopedia of machine learning. Springer, Boston. https://doi.org/10.1007/978-0-387-30164-8

  38. Munro P, Toivonen H, Webb G, Buntine W, Orbanz P, Teh Y, Poupart P, Sammut C, Blockeel H, Rajnarayan D, Wolpert D, Gerstner W, Page C, Natarajan S, Hinton G (2010) Baum-Welch algorithm. Springer, Boston, p 74. https://doi.org/10.1007/978-0-387-30164-8_59

    Google Scholar 

  39. Farooqa S, Hohlbein J (2015) Camera-based single-molecule FRET detection with improved time resolution. 17:27862-27872. https://doi.org/10.1039/C5CP04137F

Download references

Acknowledgements

Financial support from the Swiss National Science Foundation [to R.K.O.S], and the University of Zurich [to R.K.O.S] and the University of Applied Sciences Mittweida [to R.B.] is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Börner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hadzic, M.C.A.S., Sigel, R.K.O., Börner, R. (2022). Single-Molecule Kinetic Studies of Nucleic Acids by Förster Resonance Energy Transfer. In: Steger, G., Rosenbach, H., Span, I. (eds) DNAzymes. Methods in Molecular Biology, vol 2439. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2047-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2047-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2046-5

  • Online ISBN: 978-1-0716-2047-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics