Skip to main content

Investigating Tubulin-Drug Interaction Using Fluorescence Spectroscopy

  • Protocol
  • First Online:
Microtubules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2430))

Abstract

Fluorescence spectroscopy is routinely used for the determination of the interaction of a ligand with a protein. The quick detection of the interaction between the ligand and the protein is one of the most significant advantages of fluorescence spectroscopic methods. In this chapter, we have described assays to monitor drug –tubulin interactions using several fluorescence spectroscopic techniques. We have provided detailed protocols for different assays for investigating tubulin–drug interactions with key practical considerations for performing the experiments. We have also discussed how to deduce the binding parameters by fitting the fluorescence change data in different binding isotherms. Further, we have described detailed protocols to monitor the binding site of a ligand on tubulin by competitive inhibition. Though the methods are described for tubulin, these methods can also be used to monitor any drug –protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

EGTA:

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

GTP:

Guanosine triphosphate

MgCl2:

Magnesium chloride

PIPES :

Piperazine-N,N′-bis(2-ethanesulfonic acid)

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn Springer US

    Book  Google Scholar 

  2. Cantor CR, Schimmel PR (1980) Biophysical chemistry: Part II ‘techniques for the study of biological structure and function. W. H Freeman and Co., Oxford, San Francisco

    Google Scholar 

  3. Valenzuela P, Quiroga M, Zaldivar J, Rutter WJ, Kirschner MW, Cleveland DW (1981) Nucleotide and corresponding amino acid sequences encoded by α and β tubulin mRNAs. Nature 289:650–655

    Article  Google Scholar 

  4. Krauhs E, Little M, Kempf T, Hofer-Warbinek R, Ade W, Ponstingl H (1981) Complete amino acid sequence of beta-tubulin from porcine brain. Proc Natl Acad Sci USA 78:4156–4160

    Article  Google Scholar 

  5. Bhattacharyya B, Wolff J (1974) Promotion of Fluorescence upon Binding of Colchicine to Tubulin. Proc Natl Acad Sci USA 71:2627–2631

    Article  Google Scholar 

  6. Rai A, Surolia A, Panda D (2012) An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule Dynamics. PLoS One 7:e44311

    Article  Google Scholar 

  7. Liao VWY, Kumari A, Narlawar R, Vignarajan S, Hibbs DE, Panda D, Groundwater PW (2020) Tubulin-binding 3,5-bis(styryl)pyrazoles as lead compounds for the treatment of castration-resistant prostate cancer. Mol Pharmacol 97:409–422

    Article  Google Scholar 

  8. Lehrer SS, Fasman GD (1966) The fluorescence of lysozyme and lysozyme substrate complexes. Biochem Biophys Res Commun 23:133–138

    Article  Google Scholar 

  9. Ward LD (1985) Measurement of ligand binding to proteins by fluorescence spectroscopy. In: Methods in Enzymology, vol 117. Academic Press, pp 400–414

    Google Scholar 

  10. Panda D, Rathinasamy K, Santra MK, Wilson L (2005) Kinetic suppression of microtubule dynamic instability by griseofulvin: Implications for its possible use in the treatment of cancer. Proc Natl Acad Sci USA 102:9878–9883

    Article  Google Scholar 

  11. Zierler K (1977) An error in interpretation of double-reciprocal plots and Scatchard plots in the studies of binding of fluorescent probes to proteins, and alternative proposals for determining binding parameters. Biophys Struct Mech 3:275–289

    Article  Google Scholar 

  12. Martin RB (1997) Disadvantages of double reciprocal plots. J Chem Educ 74:1238

    Article  Google Scholar 

  13. Chaudhary V, Venghateri JB, Dhaked HPS, Bhoyar AS, Guchhait SK, Panda D (2016) Novel combretastatin-2-aminoimidazole analogues as potent tubulin assembly inhibitors: exploration of unique pharmacophoric impact of bridging skeleton and aryl moiety. J Med Chem 59:3439–3451

    Article  Google Scholar 

  14. Kumari A, Srivastava S, Manne RK, Sisodiya S, Santra MK, Guchhait SK, Panda D (2019) C12, a combretastatin-A4 analog, exerts anticancer activity by targeting microtubules. Biochem Pharmacol 170:113663

    Article  Google Scholar 

  15. Rai A, Gupta TK, Kini S, Kunwar A, Surolia A, Panda D (2013) CXI-benzo-84 reversibly binds to tubulin at colchicine site and induces apoptosis in cancer cells. Biochem Pharmacol 86:378–391

    Article  Google Scholar 

  16. Hastie SB (1991) Interactions of colchicine with tubulin. Pharmacol Ther 51:377–401

    Article  Google Scholar 

  17. Wilson L, Creswell KM, Chin D (1975) Mechanism of action of vinblastine. Binding of [acetyl-3H]-vinblastine to embryonic chick brain tubulin and tubulin from sea urchin sperm tail outer doublet microtubules. Biochemistry 14:5586–5592

    Article  Google Scholar 

  18. Meimetis LG, Giedt RJ, Mikula H, Carlson JC, Kohler RH, Pirovich DB, Weissleder R (2016) Fluorescent vinblastine probes for live cell imaging. Chem Commun 52:9953–9956

    Article  Google Scholar 

  19. Rai SS, Wolff J (1996) Localization of the vinblastine-binding site on β-tubulin. J Biol Chem 271:14707–14711

    Article  Google Scholar 

  20. Chatterjee SK, Laffray J, Patel P, Ravindra R, Qin Y, Kuehne ME, Bane SL (2002) Interaction of tubulin with a new fluorescent analogue of vinblastine. Biochemistry 41:14010–14018

    Article  Google Scholar 

  21. Sengupta S, Boge TC, Georg GI, Himes RH (1995) Interaction of a fluorescent paclitaxel analog with tubulin. Biochemistry 34:11889–11894

    Article  Google Scholar 

  22. Matesanz R, Rodríguez-Salarichs J, Pera B, Canales A, Andreu JM, Jiménez-Barbero J, Bras W, Nogales A, Fang W-S, Díaz JF (2011) Modulation of microtubule interprotofilament interactions by modified taxanes. Biophys J 101:2970–2980

    Article  Google Scholar 

  23. Díaz JF, Barasoain I, Souto AA, Amat-Guerri F, Andreu JM (2005) Macromolecular accessibility of fluorescent taxoids bound at a paclitaxel binding site in the microtubule surface. J Biol Chem 280:3928–3937

    Article  Google Scholar 

  24. Guy RK, Scott ZA, Sloboda RD, Nicolaou KC (1996) Fluorescent taxoids. Chem Biol 3:1021–1031

    Article  Google Scholar 

  25. Lee MM, Gao Z, Peterson BR (2017) Synthesis of a fluorescent analogue of paclitaxel that selectively binds microtubules and sensitively detects efflux by P-glycoprotein. Angew Chem Int Ed 56:6927–6931

    Article  Google Scholar 

  26. Han Y, Chaudhary AG, Chordia MD, Sackett DL, Perez-Ramirez B, Kingston DGI, Bane S (1996) Interaction of a fluorescent derivative of paclitaxel (Taxol)1 with microtubules and tubulin−colchicine. Biochemistry 35:14173–14183

    Article  Google Scholar 

  27. Hamel E, Lin CM (1981) Glutamate-induced polymerization of tubulin: characteristics of the reaction and application to the large-scale purification of tubulin. Arch Biochem Biophys 209:29–40

    Article  Google Scholar 

  28. Miller HP, Wilson L (2010) Preparation of microtubule protein and purified tubulin from bovine brain by cycles of assembly and disassembly and phosphocellulose chromatography. Methods Cell Biol 95:3–15

    Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

Download references

Acknowledgments

DP thanks JC Bose fellowship (JCB/2019/000016) from the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulal Panda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumari, A., Panda, D. (2022). Investigating Tubulin-Drug Interaction Using Fluorescence Spectroscopy. In: Inaba, H. (eds) Microtubules. Methods in Molecular Biology, vol 2430. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1983-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1983-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1982-7

  • Online ISBN: 978-1-0716-1983-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics