Skip to main content

A Fluorescence-Based In Vitro Method to Assess Cholesterol Efflux

  • Protocol
  • First Online:
Atherosclerosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2419))

Abstract

Cholesterol efflux (ChE) capacity is associated with the incidence of cardiovascular events and has been proposed as an emerging cardiovascular risk factor. ChE has been traditionally assessed by in vitro radioactive methods but these are not appropriate when assessing a large number of samples. Therefore, alternative, reproducible nonradioactive methods have been developed. This chapter describes a robust nonradioactive method using a fluorescent tracer to assess ChE in vitro.

The measurement of ChE in vitro requires three main components: a cholesterol-loaded donor cell, a cholesterol tracer, and a cholesterol acceptor. This method involves labeling of murine macrophage J774A.1 cells using the fluorescent sterol dipyrromethene boron difluoride (BODIPY)-cholesterol. The cholesterol acceptors from humans or animals include lipid-free apolipoprotein (ApoA)-1, high-density lipoprotein (HDL), HDL2 and HDL3 subfractions, serum, plasma or ApoB-depleted serum or plasma. While lipid-free ApoA-1 mediates ChE via only ATP-binding cassette (ABC)A1 transporter, the remaining acceptors mediate ChE via ABCA1 , ABCG1 and scavenger receptor class B type 1 (SRB1) transporters. The reproducibility of this BODIPY-ChE assay is excellent as the intra-assay coefficients of variation (CVs) were <10% (30 replicates on the same day) and the interassay CVs were <14% (10 experiments performed on different days, with 3 replicates each). The fluorescent method therefore represents a reproducible, safe and useful tool to evaluate ChE as an emerging cardiovascular risk factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karathanasis SK, Freeman LA, Gordon SM, Remaley AT (2017) The changing face of HDL and the best way to measure it. Clin Chem 63:196–210. https://doi.org/10.1373/clinchem.2016.257725

    Article  CAS  PubMed  Google Scholar 

  2. Lüscher TF, Landmesser U, Von Eckardstein A, Fogelman AM (2014) High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res 114:171–182. https://doi.org/10.1161/CIRCRESAHA.114.300935

    Article  CAS  PubMed  Google Scholar 

  3. Rye K-A, Bursill CA, Lambert G et al (2009) The metabolism and anti-atherogenic properties of HDL. J Lipid Res 50(Suppl):S195–S200. https://doi.org/10.1194/jlr.R800034-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Favari E, Chroni A, Tietge UJFF et al (2015) Cholesterol efflux and reverse cholesterol transport. Handb Exp Pharmacol 224:181–206. https://doi.org/10.1007/978-3-319-09665-0

    Article  CAS  PubMed  Google Scholar 

  5. Khera AV, Cuchel M, de la Llera-Moya M et al (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 364:127–135. https://doi.org/10.1056/NEJMoa1001689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anastasius M, Kockx M, Jessup W et al (2016) Cholesterol efflux capacity: an introduction for clinicians. Am Heart J 180:1–10. https://doi.org/10.1016/j.ahj.2016.07.005

    Article  CAS  Google Scholar 

  7. Saleheen D, Scott R, Javad S et al (2015) Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diabetes Endocrinol 3:507–513. https://doi.org/10.1016/S2213-8587(15)00126-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Litvinov D, Savushkin E, Garaeva E, Dergunov A (2016) Cholesterol efflux and reverse cholesterol transport: experimental approaches. Curr Med Chem 23:3883–3908. https://doi.org/10.2174/0929867323666160809093009

    Article  CAS  PubMed  Google Scholar 

  9. Escolà-Gil JC, Lee-Rueckert M, Santos D et al (2015) Quantification of in vitro macrophage cholesterol efflux and in vivo macrophage-specific reverse cholesterol transport. Methods Mol Biol 1339:211–233. https://doi.org/10.1007/978-1-4939-2929-0

    Article  PubMed  Google Scholar 

  10. Rohatgi A (2015) High-density lipoprotein function measurement in human studies: focus on cholesterol efflux capacity. Prog Cardiovasc Dis 58:32–40. https://doi.org/10.1016/j.pcad.2015.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sankaranarayanan S, Kellner-Weibel G, de la Llera-Moya M et al (2011) A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol. J Lipid Res 52:2332–2340. https://doi.org/10.1194/jlr.D018051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adorni MP, Zimetti F, Billheimer JT et al (2007) The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48:2453–2462. https://doi.org/10.1194/jlr.M700274-JLR200

    Article  CAS  PubMed  Google Scholar 

  13. Sankaranarayanan S, Oram JF, Asztalos BF et al (2009) Effects of acceptor composition and mechanism of ABCG1-mediated cellular free cholesterol efflux. J Lipid Res 50:275–284. https://doi.org/10.1194/jlr.M800362-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Cai S, Peterson BR et al (2011) Development of a cell-based, high-throughput screening assay for cholesterol efflux using a fluorescent mimic of cholesterol. Assay Drug Dev Technol 9:136–146. https://doi.org/10.1089/adt.2010.0288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rohatgi A, Khera A, Berry JD et al (2014) HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 371:2383–2393. https://doi.org/10.1038/jid.2014.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de la Llera MM, Atger V, Paul JL et al (1994) A cell culture system for screening human serum for ability to promote cellular cholesterol efflux. Relations between serum components and efflux, esterification, and transfer. Arterioscler Thromb 14:1056–1065. https://doi.org/10.1161/01.ATV.14.7.1056

    Article  Google Scholar 

  17. Rosenson RS, Brewer HB, Ansell BJ et al (2016) Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol 13:48–60. https://doi.org/10.1038/nrcardio.2015.124

    Article  CAS  PubMed  Google Scholar 

  18. Miyazaki O, Ogihara J, Fukamachi I, Kasumi T (2014) Evidence for the presence of lipid-free monomolecular apolipoprotein A-1 in plasma. J Lipid Res 55:214–225. https://doi.org/10.1194/jlr.M041038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hafiane A, Genest J (2015) HDL-mediated cellular cholesterol efflux assay method. Ann Clin Lab Sci 45:659–668

    CAS  PubMed  Google Scholar 

  20. Hölttä-Vuori M, Uronen RL, Repakova J et al (2008) BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms. Traffic 9:1839–1849. https://doi.org/10.1111/j.1600-0854.2008.00801.x

    Article  CAS  PubMed  Google Scholar 

  21. Liu Z, Thacker SG, Fernandez-Castillejo S et al (2014) Synthesis of cholesterol analogues bearing BODIPY fluorophores by Suzuki or Liebeskind-Srogl cross-coupling and evaluation of their potential for visualization of cholesterol pools. Chembiochem 15:2087–2096. https://doi.org/10.1002/cbic.201402042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the AppleCOR Project, which was made possible with the support of the Ministerio de Economía, Indústria y Competitividad, the Agencia Estatal de Investigación, and the European Regional Development Fund. The NFOC-Salut group is a consolidated research group of the Generalitat de Catalunya, Spain (reference no. 2017 SGR 522). The role of the funders was limited to an economic contribution through a competitive call. The funders had no role in the conception, design, performance, or approval of the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara Fernández-Castillejo or Úrsula Catalán Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernández-Castillejo, S., Pedret, A., Catalán Santos, Ú., Solà, R. (2022). A Fluorescence-Based In Vitro Method to Assess Cholesterol Efflux. In: Ramji, D. (eds) Atherosclerosis. Methods in Molecular Biology, vol 2419. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1924-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1924-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1923-0

  • Online ISBN: 978-1-0716-1924-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics