Skip to main content

In Vitro and In Vivo Approaches to Study Kinetochore-Microtubule Attachments During Mitosis

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2415))

Abstract

The separation of duplicated chromosomes during mitosis is a pivotal step in the process of cellular division. Therefore, the orchestrated events that take place to ensure proper attachment and stabilization of kMTs are keen areas of interest in the mitosis field. Here we describe the methods used to study kMT attachments via in vitro biochemical methods and in vivo cell biological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol 9:33–46. https://doi.org/10.1038/nrm2310

    Article  CAS  PubMed  Google Scholar 

  2. Varma D, Salmon ED (2012) The KMN protein network - chief conductors of the kinetochore orchestra. J Cell Sci 125:5927–5936. https://doi.org/10.1242/jcs.093724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Varma D, Chandrasekaran S, Sundin LJR et al (2012) Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore–microtubule attachment. Nat Cell Biol 14:593–603. https://doi.org/10.1038/ncb2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agarwal S, Smith KP, Zhou Y et al (2018) Cdt1 stabilizes kinetochore–microtubule attachments via an Aurora B kinase–dependent mechanism. J Cell Biol 217:3446–3463. https://doi.org/10.1083/jcb.201705127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The |conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997. https://doi.org/10.1016/j.cell.2006.09.039

    Article  CAS  PubMed  Google Scholar 

  6. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88. https://doi.org/10.1016/s1046-5928(03)00218-3

    Article  CAS  PubMed  Google Scholar 

  7. Mckenney RJ, Huynh W, Tanenbaum ME et al (2014) Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345:337–341. https://doi.org/10.1126/science.1254198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan R, Foster PJ, Needleman DJ, Mckenney RJ (2018) Cooperative accumulation of dynein-dynactin at microtubule minus-ends drives microtubule network reorganization. Dev Cell 44(2):233–247. https://doi.org/10.1016/j.devcel.2017.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Edelstein AD, Tsuchida MA, Amodaj N et al (2014) Advanced methods of microscope control using μManager software. J Biol Methods 1:10. https://doi.org/10.14440/jbm.2014.36

    Article  Google Scholar 

  10. Helenius J, Brouhard G, Kalaidzidis Y et al (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441:115–119. https://doi.org/10.1038/nature04736

    Article  CAS  PubMed  Google Scholar 

  11. Guimaraes GJ, Dong Y, Mcewen BF, Deluca JG (2008) Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 18:1778–1784. https://doi.org/10.1016/j.cub.2008.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He B, Cimini D (2016) Using photoactivatable GFP to study microtubule dynamics and chromosome segregation. Methods Mol Biol 1413:15–31. https://doi.org/10.1007/978-1-4939-3542-0_2

    Article  CAS  PubMed  Google Scholar 

  13. Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942. https://doi.org/10.1016/j.cub.2009.09.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganem NJ, Upton K, Compton DA (2005) Efficient mitosis in human cells lacking poleward microtubule flux. Curr Biol 15:1827–1832. https://doi.org/10.1016/j.cub.2005.08.065

    Article  CAS  PubMed  Google Scholar 

  15. Holubcova Z, Blayney M, Elder K, Schuh M (2015) Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 348:1143–1147. https://doi.org/10.1126/science.aaa9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mogessie B, Schuh M (2017) Actin protects mammalian eggs against chromosome segregation errors. Science 357(6353):eaal1647. https://doi.org/10.1126/science.aal1647

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the National Institute of Health (NIH) Grant R01GM135391 to D.V. from the National Institute of General Medical Sciences (NIGMS). Sana Afreen and Amit Rahi contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Afreen, S., Rahi, A., Landeros, A.G., Chakraborty, M., McKenney, R.J., Varma, D. (2022). In Vitro and In Vivo Approaches to Study Kinetochore-Microtubule Attachments During Mitosis. In: Hinchcliffe, E.H. (eds) Mitosis. Methods in Molecular Biology, vol 2415. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1904-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1904-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1903-2

  • Online ISBN: 978-1-0716-1904-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics