Skip to main content

Gene Regulatory Network Dynamical Logical Models for Plant Development

  • Protocol
  • First Online:
Plant Systems Biology

Abstract

Mathematical and computational approaches that integrate and model the concerted action of multiple genetic and nongenetic components holding highly nonlinear interactions are fundamental for the study of developmental processes. Among these, gene regulatory network (GRN) dynamical models are very useful to understand how diverse types of regulatory constraints restrict the multigene expression patterns that characterize different cell fates. In this chapter we present a hands-on approach to model GRN dynamics, taking as a working example a well-curated and experimentally grounded GRN developmental module proposed by our group: the flower organ specification gene regulatory network (FOS-GRN). We demonstrate how to build and analyze a GRN model according to the following steps: (1) integration of molecular genetic data and formulation of logical rules specifying the dynamic behavior of each gene; (2) determination of steady states (attractors) corresponding to each cell type; (3) validation of the GRN model; and (4) extension of the deterministic model with the inclusion of stochasticity in order to model cell-state transitions dependent on noise due to fluctuations of the involved gen products. The methodologies explained here in detail can be applied to any other developmental module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azpeitia E, Alvarez-Buylla ER (2012) A complex systems approach to Arabidopsis root stem-cell niche developmental mechanisms: from molecules, to networks, to morphogenesis. Plant Mol Biol 80:351–363

    Article  CAS  Google Scholar 

  2. Azpeitia E, Davila-Velderrain J, Villarreal C, Alvarez-Buylla ER (2014) Gene regulatory network models for floral organ determination. In: Flower development. Springer, pp 441–469

    Chapter  Google Scholar 

  3. Barrio RA, Romero-Arias JR, Noguez MA, Azpeitia E, Ortiz-Gutiérrez E et al (2013) Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system. PLoS Comput Biol 9:e1003026

    Article  CAS  Google Scholar 

  4. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER (2015) Modeling the epigenetic attractors landscape: toward a post-genomic mechanistic understanding of development. Front Genet 6:160

    Article  Google Scholar 

  5. Álvarez-Buylla E, Dávila-Velderrain J, Martínez-García JC (2016) Systems biology approaches to development beyond bioinformatics: nonlinear mechanistic models using plant systems. Bioscience 66(5):371–383

    Article  Google Scholar 

  6. Velderraín JD, Martínez-García JC, Álvarez-Buylla ER (2017) Boolean dynamic modeling approaches to study plant gene regulatory networks: integration, validation, and prediction. Methods Mol Biol 1629:297–315

    Article  Google Scholar 

  7. Alvarez-Buylla ER, Benítez M, Espinosa-Soto C et al (2007) Phenotypic evolution is restrained by complex developmental processes. HFSP J 1:99–103

    Article  CAS  Google Scholar 

  8. Alvarez-Buylla ER, Azpeitia E, Barrio R, Benítez M, Padilla-Longoria P (2010) From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches. Semin Cell Dev Biol 21(1):108–117

    Article  CAS  Google Scholar 

  9. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701

    Article  Google Scholar 

  10. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  CAS  Google Scholar 

  11. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thalianal flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939

    Article  CAS  Google Scholar 

  12. Meiss JD (2017) Differential dynamical systems (revised edition). SIAM Monogr. Math. Comput. 14. SIAM, Philadelphia

    Book  Google Scholar 

  13. Hinrichsen D, Pritchard AJ (2011) Mathematical systems theory I: modelling, state space analysis, stability and robustness (Corr 3rd printing). Springer Science & Business Media

    Google Scholar 

  14. Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193(2):307–319

    Article  CAS  Google Scholar 

  15. Azpeitia E, Benítez M, Vega I, Villarreal C, Alvarez-Buylla ER (2010) Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Syst Biol 4:134

    Article  Google Scholar 

  16. Pérez-Ruiz RV, García-Ponce B, Marsch-Martínez N et al (2015) XAANTAL2 (AGL14) is an important component of the complex gene regulatory network that underlies arabidopsis shoot apical meristem transitions. Mol Plant 8:796–813

    Article  Google Scholar 

  17. Sanchez-Corrales YE, Alvarez-Buylla ER, Mendoza L (2010) The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. J Theor Biol 264:971–983

    Article  CAS  Google Scholar 

  18. Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566

    Article  CAS  Google Scholar 

  19. Chen L, Cheng J, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9:2011–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among AP1, LFY, and TFL1 specify meristem fate. Plant Cell 11:1007–1018

    Article  CAS  Google Scholar 

  21. Ratcliffe OJ, Bradley DJ, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    Article  CAS  Google Scholar 

  22. Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER (2016) Dynamic network modelling to understanding flowering transition and floral patterning. J Exp Bot 123

    Google Scholar 

  23. Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos CA, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes MF, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE (2010) Flower development. Arabidopsis Book 8:e0127

    Article  Google Scholar 

  24. Villarreal C, Padilla-Longoria P, Alvarez-Buylla ER (2012) General theory of genotype to phenotype mapping: derivation of epigenetic landscapes from N-node complex gene regulatory networks. Phys Rev Lett 109(118102):1–5

    Google Scholar 

  25. Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380

    Article  Google Scholar 

  26. Whitacre JM (2012) Biological robustness: paradigms, mechanisms, and systems principles. Front Genet 3:67

    PubMed  PubMed Central  Google Scholar 

  27. Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3(137):137. https://doi.org/10.1038/msb4100179

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu Z, Meyerowitz EM (1995) LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 121:975–991

    Article  CAS  Google Scholar 

  29. Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810

    Article  CAS  Google Scholar 

  30. Alvarez-Buylla ER, Chaos A, Aldana M, Benítez M, Cortes-Poza Y, Espinosa-Soto C, Hartasánchez DA, Lotto RB, Malkin D, Escalera Santos GJ, Padilla-Longoria P (2008) Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS One 3(11):e36265

    Article  Google Scholar 

  31. Garg A, Mohanram K, Di Cara A, De Micheli G, Xenarios I (2009) Modeling stochasticity and robustness in gene regulatory networks. Bioinformatics 25:i101–i109

    Article  CAS  Google Scholar 

  32. Arellano G, Argil J, Azpeitia E, Benítez M, Carrillo M, Góngora P, Rosenblueth DA, Alvarez-Buylla ER (2011) “Antelope”: a hybrid-logic model checker for branching-time Boolean GRN analysis. BMC Bioinformatics 12:1–14

    Article  Google Scholar 

  33. Naldi A, Berenguier D, Fauré A, Lopez F, Thieffry D, Chaouiya C (2009) Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97:134–139

    Article  CAS  Google Scholar 

  34. Corblin F, Tripodi S, Fanchon E, Ropers D, Trilling L (2009) A declarative constraint-based method for analyzing discrete genetic regulatory networks. Biosystems 98:91–104

    Article  CAS  Google Scholar 

  35. de Jong H, Geiselmann J, Hernandez C, Page M (2003) Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3):336–344

    Article  Google Scholar 

  36. Calzone L, Fages F, Soliman S (2006) BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14):1805–1807

    Article  CAS  Google Scholar 

  37. Azpeitia E, Benítez M, Padilla-Longoria P, Espinosa-Soto C, Alvarez-Buylla ER (2011) Dynamic network-based epistasis analysis: boolean examples. Front Plant Sci 2:92

    Article  Google Scholar 

  38. Xiao Y, Dougherty ER (2007) The impact of function perturbations in Boolean networks. Bioinformatics 23(10):1265–1273

    Article  CAS  Google Scholar 

  39. Xiao Y (2009) A tutorial on analysis and simulation of boolean gene regulatory network models. Curr Genomics 10(7):511

    Article  CAS  Google Scholar 

  40. Garg A, Mohanram K, De Micheli G, Xenarios I (2012) Implicit methods for qualitative modeling of gene regulatory networks. Methods Mol Biol 786:397–443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elena Álvarez-Buylla Roces .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dávila-Velderrain, J., Caldú-Primo, J.L., Martínez-García, J.C., Álvarez-Buylla Roces, M.E. (2022). Gene Regulatory Network Dynamical Logical Models for Plant Development. In: Lucas, M. (eds) Plant Systems Biology. Methods in Molecular Biology, vol 2395. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1816-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1816-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1814-1

  • Online ISBN: 978-1-0716-1816-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics