Skip to main content

Smartphone-Based Electrochemical System for Biosensors and Biodetection

  • Protocol
  • First Online:
Biomedical Engineering Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2393))

Abstract

With the advantages of high popularity, convenient operation, open-source operation systems, high resolution imaging, and excellent computing capabilities, smartphones have been widely used as the core of detection system for calculation, control, and real-time display. Hence, smartphones play an important role in electrochemical detection and optical detection. Smartphone-based electrochemical systems were combined with screen-printed electrode and interdigital electrodes for in situ detection. The electrodes were modified with biomaterials, chemical materials, and nanomaterials for biosensors and biodetection, such as 3-amino phenylboronic acid nanocomposites, graphene, gold nanoparticles, zinc oxide nanoparticles, carbon nanotubes, proteins, peptides, and antibodies. With the modified electrodes, the smartphone-based impedance system was used to detect acetone, bovine serum albumin, human serum albumin, and trinitrotoluene, while smartphone-based amperometric system was employed to monitor glucose, ascorbic acid, dopamine, uric acid, and levodopa. The smartphone-based electrochemical system for biosensors and biodetection has provided miniaturized and portable alternative for diagnosis, which is promising to find application in point-of-care testing (POCT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196. https://doi.org/10.1039/c3cs35528d

    Article  CAS  PubMed  Google Scholar 

  2. Turner APF (2000) Biochemistry—biosensors sense and sensitivity. Science 290(5495):1315–1317. https://doi.org/10.1126/science.290.5495.1315

    Article  CAS  PubMed  Google Scholar 

  3. Healy DA, Hayes CJ, Leonard P, McKenna L, O’Kennedy R (2007) Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol 25(3):125–131

    Article  CAS  Google Scholar 

  4. Goode J, Rushworth J, Millner P (2014) Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31(23):6267–6276

    Article  Google Scholar 

  5. Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst Eng 84(1):1–12

    Article  Google Scholar 

  6. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1–2):8–26

    Article  CAS  Google Scholar 

  7. Védrine C, Leclerc J-C, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18(4):457–463

    Article  Google Scholar 

  8. Gorton L, Lindgren A, Larsson T, Munteanu F, Ruzgas T, Gazaryan I (1999) Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 400(1–3):91–108

    Article  CAS  Google Scholar 

  9. Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ (2009) Antibody production, design and use for biosensor-based applications. In: Seminars in cell & developmental biology, vol vol 1. Elsevier, pp 10–26

    Google Scholar 

  10. Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469(1):63–71

    Article  CAS  Google Scholar 

  11. Brandt O, Hoheisel JD (2004) Peptide nucleic acids on microarrays and other biosensors. Trends Biotechnol 22(12):617–622

    Article  CAS  Google Scholar 

  12. Singh R, Mukherjee MD, Sumana G, Gupta RK, Sood S, Malhotra B (2014) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B Chem 197:385–404

    Article  CAS  Google Scholar 

  13. Joseph S, Rusling JF, Lvov YM, Friedberg T, Fuhr U (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharmacol 65(11):1817–1826

    Article  CAS  Google Scholar 

  14. Wang J, Rivas G, Cai X, Palecek E, Nielsen P, Shiraishi H, Dontha N, Luo D, Parrado C, Chicharro M (1997) DNA electrochemical biosensors for environmental monitoring. A review. Anal Chim Acta 347(1–2):1–8

    Article  CAS  Google Scholar 

  15. Balakrishnan SR, Hashim U, Letchumanan G, Kashif M, Ruslinda A, Liu W, Veeradasan P, Prasad RH, Foo K, Poopalan P (2014) Development of highly sensitive polysilicon nanogap with APTES/GOx based lab-on-chip biosensor to determine low levels of salivary glucose. Sensors Actuators A Phys 220:101–111

    Article  CAS  Google Scholar 

  16. Zhang D, Liu Q (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron 75:273–284

    Article  CAS  Google Scholar 

  17. Ji D, Xu N, Liu Z, Shi Z, Low SS, Liu J, Cheng C, Zhu J, Zhang T, Xu H (2019) Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens Bioelectron 129:216–223

    Article  CAS  Google Scholar 

  18. Zhang D, Lu Y, Zhang Q, Liu L, Li S, Yao Y, Jiang J, Liu GL, Liu Q (2016) Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors Actuators B Chem 222:994–1002

    Article  CAS  Google Scholar 

  19. Sood VR, Gururajan R, Hafeez-Baig A, Wickramasinghe N (2018) Adoption of mobile devices in the Australian healthcare: a conceptual framework approach. In: Technology adoption and social issues: concepts, methodologies, tools, and applications. IGI Global, pp 954–977

    Chapter  Google Scholar 

  20. Bisetty K (2018) Smartphone based bioanalytical and diagnosis applications: a review. Biosens Bioelectron 102:136–149

    Article  Google Scholar 

  21. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391(5):1555

    Article  CAS  Google Scholar 

  22. Biran I, Babai R, Levcov K, Rishpon J, Ron EZ (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2(3):285–290

    Article  CAS  Google Scholar 

  23. Kerman K, Kobayashi M, Tamiya E (2003) Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 15(2):R1

    Article  Google Scholar 

  24. Guo J (2016) Uric acid monitoring with a smartphone as the electrochemical analyzer. Anal Chem 88(24):11986–11989

    Article  CAS  Google Scholar 

  25. Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell EJ, Fernández-Abedul MT, Whitesides GM (2014) Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci 111(33):11984–11989

    Article  CAS  Google Scholar 

  26. Ji D, Liu L, Li S, Chen C, Lu Y, Wu J, Liu Q (2017) Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron 98:449–456

    Article  CAS  Google Scholar 

  27. Ji D, Liu Z, Liu L, Low SS, Lu Y, Yu X, Zhu L, Li C, Liu Q (2018) Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens Bioelectron 119:55–62

    Article  CAS  Google Scholar 

  28. Sun A, Wambach T, Venkatesh A, Hall DA (2014) A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. In: Biomedical circuits and systems conference (BioCAS), 2014 IEEE. IEEE, pp 312–315

    Chapter  Google Scholar 

  29. Zhang L, Yang W, Yang Y, Liu H, Gu Z (2015) Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement. Analyst 140(21):7399–7406

    Article  CAS  Google Scholar 

  30. Zhang D, Jiang J, Chen J, Zhang Q, Lu Y, Yao Y, Li S, Liu GL, Liu Q (2015) Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2, 4, 6-trinitrotoluene (TNT) detection. Biosens Bioelectron 70:81–88

    Article  CAS  Google Scholar 

  31. Liu L, Zhang D, Zhang Q, Chen X, Xu G, Lu Y, Liu Q (2017) Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection. Biosens Bioelectron 93:94–101

    Article  CAS  Google Scholar 

  32. Guo J (2017) Smartphone-powered electrochemical dongle for point-of-care monitoring of blood β-ketone. Anal Chem 89(17):8609–8613

    Article  CAS  Google Scholar 

  33. Wang X, Gartia MR, Jiang J, Chang T-W, Qian J, Liu Y, Liu X, Liu GL (2015) Audio jack based miniaturized mobile phone electrochemical sensing platform. Sensors Actuators B Chem 209:677–685

    Article  CAS  Google Scholar 

  34. Martínez-Pérez B, De La Torre-Díez I, López-Coronado M (2013) Mobile health applications for the most prevalent conditions by the World Health Organization: review and analysis. J Med Internet Res 15(6):e120

    Article  Google Scholar 

  35. Guo J, Ma X (2017) Simultaneous monitoring of glucose and uric acid on a single test strip with dual channels. Biosens Bioelectron 94:415–419

    Article  CAS  Google Scholar 

  36. Aronoff-Spencer E, Venkatesh A, Sun A, Brickner H, Looney D, Hall DA (2016) Detection of hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens Bioelectron 86:690–696

    Article  CAS  Google Scholar 

  37. Xu D, Huang X, Guo J, Ma X (2018) Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens Bioelectron 110:78–88

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Key Research and Development Program (Grant No. 2018YFC1707701), the National Natural Science Foundation of China (Grant No. 81801793, 31671007), the China Postdoctoral Science Foundation (Grant No. 2018 M630677, 2019 T120518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjun Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ji, D., Low, S.S., Zhang, D., Liu, L., Lu, Y., Liu, Q. (2022). Smartphone-Based Electrochemical System for Biosensors and Biodetection. In: Ossandon, M.R., Baker, H., Rasooly, A. (eds) Biomedical Engineering Technologies. Methods in Molecular Biology, vol 2393. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1803-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1803-5_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1802-8

  • Online ISBN: 978-1-0716-1803-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics