Skip to main content

Fmoc Solid Phase Peptide Synthesis of Oxytocin and Analogues

  • Protocol
  • First Online:
Oxytocin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2384))

Abstract

Solid phase peptide synthesis is the most commonly used method for the production of peptides. In this chapter, we outline the standard operating procedures used in our laboratory to efficiently access oxytocin-like peptides. This includes detailed descriptions of equipment setup, reagent selection, peptide assembly on solid support, peptide side chain deprotection and cleavage from the solid support, oxidative folding, purification, and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954) The synthesis of oxytocin. J Am Chem Soc 76(12):3115–3121. https://doi.org/10.1021/ja01641a004

    Article  Google Scholar 

  2. du Vigneaud V (1955) Trail of sulfur research: from insulin to oxytocin. Science 123(3205):967–974. https://doi.org/10.1126/science.123.3205.967

  3. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154. https://doi.org/10.1021/ja00897a025

    Article  CAS  Google Scholar 

  4. Merrifield RB (1985) Solid phase synthesis (Nobel lecture). Angew Chem Int Ed 24(10):799–810. https://doi.org/10.1002/anie.198507993

    Article  Google Scholar 

  5. Carpino LA, Han GY (1970) 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc 92(19):5748–5749. https://doi.org/10.1021/ja00722a043

    Article  CAS  Google Scholar 

  6. Carpino LA, Han GY (1972) 9-Fluorenylmethoxycarbonyl amino-protecting group. J Org Chem 37(22):3404–3409. https://doi.org/10.1021/jo00795a005

    Article  CAS  Google Scholar 

  7. Carpino LA (1973) New amino-protecting groups in organic synthesis. Acc Chem Res 6(6):191–198. https://doi.org/10.1021/ar50066a003

    Article  CAS  Google Scholar 

  8. Atherton E, Fox H, Harkiss D, Logan CJ, Sheppard RC, Williams BJ (1978) A mild procedure for solid phase peptide synthesis: use of fluorenylmethoxycarbonylamino-acids. Chem Biol Drug Des (13):537–539. https://doi.org/10.1039/C39780000537

  9. Chang C-D, Meienhofer J (1978) Solid-phase peptide synthesis using mild base cleavage of N-α-fluorenylmethyloxycarbonylamino acids, exemplified by a synthesis of dihydrosomatostatin. Int J Pept Protein Res 11(3):246–249. https://doi.org/10.1111/j.1399-3011.1978.tb02845.x

    Article  CAS  PubMed  Google Scholar 

  10. Jensen KJ, Tofteng AP, Pedersen SL (2013) Peptide synthesis and applications, vol 1047. Methods Mol. Biol., 2nd edn. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-62703-544-6

    Book  Google Scholar 

  11. Muttenthaler M, Albericio F, Dawson PE (2015) Methods, setup and safe handling for anhydrous hydrogen fluoride cleavage in Boc solid-phase peptide synthesis. Nat Protoc 10(7):1067–1083. https://doi.org/10.1038/nprot.2015.061

    Article  CAS  PubMed  Google Scholar 

  12. Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35(3):161–214. https://doi.org/10.1111/j.1399-3011.1990.tb00939.x

    Article  CAS  PubMed  Google Scholar 

  13. Kirtikumar BJ, Katrina JW, Muttenthaler M (2020) Anhydrous hydrogen fluoride cleavage in Boc solid phase peptide synthesis. Methods Mol Biol 2103, 41–57

    Google Scholar 

  14. Camarero JA, Adeva A, Muir TW (2000) 3-thiopropionic acid as a highly versatile multidetachable thioester resin linker. Lett Pept Sci 7(1):17–21. https://doi.org/10.1007/BF02443557

    Article  CAS  Google Scholar 

  15. Schnölzer M, Alewood PF, Jones A, Alewood D, Kent SBH, KENT SBH (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Int J Pept Protein Res 40(3-4):180–193. https://doi.org/10.1111/j.1399-3011.1992.tb00291.x

    Article  PubMed  Google Scholar 

  16. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22(1):4–27. https://doi.org/10.1002/psc.2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Made V, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10:1197–1212. https://doi.org/10.3762/bjoc.10.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fields CG, Lloyd DH, Macdonald RL, Otteson KM, Noble RL (1991) HBTU activation for automated Fmoc solid-phase peptide synthesis. Pept Res 4(2):95–101

    CAS  PubMed  Google Scholar 

  19. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34(2):595–598. https://doi.org/10.1016/0003-2697(70)90146-6

    Article  CAS  PubMed  Google Scholar 

  20. Sarin VK, Kent SBH, Tam JP, Merrifield RB (1981) Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem 117(1):147–157. https://doi.org/10.1016/0003-2697(81)90704-1

    Article  CAS  PubMed  Google Scholar 

  21. Kaiser E, Bossinger CD, Colescott RL, Olsen DB (1980) Color test for terminal prolyl residues in the solid-phase synthesis of peptides. Anal Chim Acta 118(1):149–151. https://doi.org/10.1016/S0003-2670(01)93726-2

    Article  CAS  Google Scholar 

  22. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38(2):606–631. https://doi.org/10.1039/b701677h

    Article  CAS  PubMed  Google Scholar 

  23. El-Faham A, Albericio F (2011) Peptide coupling reagents, more than a letter soup. Chem Rev 111(11):6557–6602. https://doi.org/10.1021/cr100048w

    Article  CAS  PubMed  Google Scholar 

  24. Dourtoglou V, Gross B, Lambropoulou V, Zioudrou C (1984) O-benzotriazolyl-N,N,N′,N′-tetramethyluronium hexafluorophosphate as coupling reagent for the synthesis of peptides of biological interest. Synthesis 1984(07):572–574. https://doi.org/10.1055/s-1984-30895

    Article  Google Scholar 

  25. Carpino LA (1993) 1-Hydroxy-7-azabenzotriazole. an efficient peptide coupling additive. J Am Chem Soc 115(10):4397–4398. https://doi.org/10.1021/ja00063a082

    Article  CAS  Google Scholar 

  26. Carpino LA, Imazumi H, El-Faham A, Ferrer FJ, Zhang C, Lee Y, Foxman BM, Henklein P, Hanay C, Mügge C, Wenschuh H, Klose J, Beyermann M, Bienert M (2002) The Uronium/Guanidinium peptide coupling reagents: finally the true Uronium salts. Angew Chem Int Ed 41(3):441–445. https://doi.org/10.1002/1521-3773(20020201)41:3<441::Aid-anie441>3.0.Co;2-n

    Article  CAS  Google Scholar 

  27. Sabatino G, Mulinacci B, Alcaro MC, Chelli M, Rovero P, Papini AM (2002) Assessment of new 6-cl-HOBt based coupling reagents for peptide synthesis. Part 1: coupling efficiency study. Lett Pept Sci 9(2):119–123. https://doi.org/10.1007/bf02576873

    Article  CAS  Google Scholar 

  28. Subiros-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F (2009) Oxyma: an efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J 15(37):9394–9403. https://doi.org/10.1002/chem.200900614

    Article  CAS  PubMed  Google Scholar 

  29. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2(12):3247–3256. https://doi.org/10.1038/nprot.2007.454

    Article  CAS  PubMed  Google Scholar 

  30. Paradis-Bas M, Tulla-Puche J, Albericio F (2016) The road to the synthesis of "difficult peptides". Chem Soc Rev 45(3):631–654. https://doi.org/10.1039/c5cs00680e

    Article  CAS  PubMed  Google Scholar 

  31. Guy CA, Fields GB (1997) Trifluoroacetic acid cleavage and deprotection of resin-bound peptides following synthesis by Fmoc chemistry. Meth Enzymol 289:67–83. https://doi.org/10.1016/S0076-6879(97)89044-1

    Article  CAS  Google Scholar 

  32. Wan J, Mobli M, Brust A, Muttenthaler M, Andersson A, Ragnarsson L, Castro J, Vetter I, Huang JX, Nilsson M, Brierley SM, Cooper MA, Lewis RJ, Alewood PF (2017) Synthesis of multivalent [Lys8]-oxytocin dendrimers that inhibit visceral nociceptive responses. Aust J Chem 70(2):162. https://doi.org/10.1071/ch16407

    Article  CAS  Google Scholar 

  33. Wan J, Huang JX, Vetter I, Mobli M, Lawson J, Tae HS, Abraham N, Paul B, Cooper MA, Adams DJ, Lewis RJ, Alewood PF (2015) Alpha-Conotoxin dendrimers have enhanced potency and selectivity for homomeric nicotinic acetylcholine receptors. J Am Chem Soc 137(9):3209–3212. https://doi.org/10.1021/jacs.5b00244

    Article  CAS  PubMed  Google Scholar 

  34. Isidro-Llobet A, Álvarez M, Albericio F (2009) Amino acid-protecting groups. Chem Rev 109(6):2455–2504. https://doi.org/10.1021/cr800323s

    Article  CAS  PubMed  Google Scholar 

  35. Postma TM, Albericio F (2014) Disulfide formation strategies in peptide synthesis. Eur J Org Chem 2014(17):3519–3530. https://doi.org/10.1002/ejoc.201402149

    Article  CAS  Google Scholar 

  36. Jin A-H, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewis RJ, Alewood PF (2019) Conotoxins: chemistry and biology. Chem Rev 119(21):11510–11549. https://doi.org/10.1021/acs.chemrev.9b00207

    Article  CAS  PubMed  Google Scholar 

  37. Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF (2014) Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 114(11):5815–5847. https://doi.org/10.1021/cr400401e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muttenthaler M, Nevin ST, Grishin AA, Ngo ST, Choy PT, Daly NL, Hu S-H, Armishaw CJ, Wang C-IA, Lewis RJ, Martin JL, Noakes PG, Craik DJ, Adams DJ, Alewood PF (2010) Solving the α-Conotoxin folding problem: efficient selenium-directed on-resin generation of more potent and stable nicotinic acetylcholine receptor antagonists. J Am Chem Soc 132(10):3514–3522. https://doi.org/10.1021/ja910602h

    Article  CAS  PubMed  Google Scholar 

  39. Muttenthaler M, Andersson A, de Araujo AD, Dekan Z, Lewis RJ, Alewood PF (2010) Modulating oxytocin activity and plasma stability by disulfide bond engineering. J Med Chem 53(24):8585–8596. https://doi.org/10.1021/jm100989w

    Article  CAS  PubMed  Google Scholar 

  40. Conibear AC, Daly NL, Craik DJ (2012) Quantification of small cyclic disulfide-rich peptides. Biopolymers 98(6):518–524. https://doi.org/10.1002/bip.22121

    Article  CAS  PubMed  Google Scholar 

  41. Moffatt F, Senkans P, Ricketts D (2000) Approaches towards the quantitative analysis of peptides and proteins by reversed-phase high-performance liquid chromatography in the absence of a pure reference sample. J Chromatogr A 891(2):235–242. https://doi.org/10.1016/S0021-9673(00)00620-8

    Article  CAS  PubMed  Google Scholar 

  42. Buck MA, Olah TA, Weitzmann CJ, Cooperman BS (1989) Protein estimation by the product of integrated peak area and flow rate. Anal Biochem 182(2):295–299. https://doi.org/10.1016/0003-2697(89)90597-6

    Article  CAS  PubMed  Google Scholar 

  43. McKnelly KJ, Sokol W, Nowick JS (2020) Anaphylaxis induced by peptide coupling agents: lessons learned from repeated exposure to HATU, HBTU, and HCTU. J Org Chem 85(3):1764–1768. https://doi.org/10.1021/acs.joc.9b03280

    Article  CAS  PubMed  Google Scholar 

  44. Albericio F, Bofill JM, El-Faham A, Kates SA (1998) Use of onium salt-based coupling reagents in peptide synthesis. J Org Chem 63(26):9678–9683. https://doi.org/10.1021/jo980807y

    Article  CAS  Google Scholar 

  45. Huang H, Rabenstein DL (1999) A cleavage cocktail for methionine-containing peptides. J Pept Res 53(5):548–553. https://doi.org/10.1034/j.1399-3011.1999.00059.x

    Article  CAS  PubMed  Google Scholar 

  46. Sole NA, Barany G (1992) Optimization of solid-phase synthesis of [Ala8]-dynorphin a. J Org Chem 57(20):5399–5403. https://doi.org/10.1021/jo00046a022

    Article  CAS  Google Scholar 

  47. Albericio F, Kneib-Cordonier N, Biancalana S, Gera L, Masada RI, Hudson D, Barany G (1990) Preparation and application of the 5-(4-(9-fluorenylmethyloxycarbonyl)aminomethyl-3,5-dimethoxyphenoxy)-valeric acid (PAL) handle for the solid-phase synthesis of C-terminal peptide amides under mild conditions. J Org Chem 55(12):3730–3743. https://doi.org/10.1021/jo00299a011

    Article  CAS  Google Scholar 

  48. Teixeira A, Benckhuijsen WE, PED K, ARPM V, Drijfhout JW (2002) The use of Dodt as a non-malodorous scavenger in Fmoc-based peptide synthesis. Protein Pept Lett 9(5):379–385. https://doi.org/10.2174/0929866023408481

    Article  CAS  PubMed  Google Scholar 

  49. Gomez-Martinez P, Dessolin M, Guibé F, Albericio F (1999) Nα-Alloc temporary protection in solid-phase peptide synthesis. The use of amine–borane complexes as allyl group scavengers. J Chem Soc Perkin Trans 1(20):2871–2874. https://doi.org/10.1039/A906025A

    Article  Google Scholar 

  50. Grieco P, Gitu PM, Hruby VJ (2001) Preparation of ‘side-chain-to-side-chain’ cyclic peptides by allyl and Alloc strategy: potential for library synthesis. J Pept Res 57(3):250–256. https://doi.org/10.1111/j.1399-3011.2001.00816.x

    Article  CAS  PubMed  Google Scholar 

  51. Maity SK, Jbara M, Laps S, Brik A (2016) Efficient palladium-assisted one-pot Deprotection of (Acetamidomethyl)cysteine following native chemical ligation and/or desulfurization to expedite chemical protein synthesis. Angew Chem Int Ed 55(28):8108–8112. https://doi.org/10.1002/anie.201603169

    Article  CAS  Google Scholar 

  52. Wang P, Dong S, Shieh J-H, Peguero E, Hendrickson R, Moore MAS, Danishefsky SJ (2013) Erythropoietin derived by chemical synthesis. Science 342(6164):1357–1360. https://doi.org/10.1126/science.1245095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chhabra SR, Hothi B, Evans DJ, White PD, Bycroft BW, Chan WC (1998) An appraisal of new variants of Dde amine protecting group for solid phase peptide synthesis. Tetrahedron Lett 39(12):1603–1606. https://doi.org/10.1016/S0040-4039(97)10828-0

    Article  CAS  Google Scholar 

  54. Galande AK, Weissleder R, Tung C-H (2005) An effective method of on-resin disulfide bond formation in peptides. J Comb Chem 7(2):174–177. https://doi.org/10.1021/cc049839r

    Article  CAS  PubMed  Google Scholar 

  55. Harris KM, Flemer S Jr, Hondal RJ (2007) Studies on deprotection of cysteine and selenocysteine side-chain protecting groups. J Pept Sci 13(2):81–93. https://doi.org/10.1002/psc.795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schroll AL, Hondal RJ, Flemer S Jr (2012) 2,2'-Dithiobis(5-nitropyridine) (DTNP) as an effective and gentle deprotectant for common cysteine protecting groups. J Pept Sci 18(1):1–9. https://doi.org/10.1002/psc.1403

    Article  CAS  PubMed  Google Scholar 

  57. Aletras A, Barlos K, Gatos D, Koutsogianni S, Mamos P (1995) Preparation of the very acid-sensitive Fmoc-Lys(Mtt)-OH application in the synthesis of side-chain to side-chain cyclic peptides and oligolysine cores suitable for the solid-phase assembly of MAPs and TASPs. Int J Pept Protein Res 45(5):488–496. https://doi.org/10.1111/j.1399-3011.1995.tb01065.x

    Article  CAS  PubMed  Google Scholar 

  58. Rei M, Takahide K, Thomas KE, Matsueda Gary R (1981) 3-Nitro-2-Pyridinesulfenyl group for the protection and activation of the thiol function of cysteine. Chem Lett 10(6):737–740. https://doi.org/10.1246/cl.1981.737

    Article  Google Scholar 

  59. Albericio F, Andreu D, Giralt E, Navalpotro C, Pedroso E, Ponsati B, Rue-gayo M (1989) Use of the Npys thiol protection in solid phase peptide synthesis application to direct peptide-protein conjugation through cysteine residues. Int J Pept Protein Res 34(2):124–128. https://doi.org/10.1111/j.1399-3011.1989.tb01500.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. Muttenthaler was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation program (714366), by the Australian Research Council (DP190101667), the Vienna Science and Technology Fund (WWTF; LS18-053) and by Cancer Australia and Cancer Council Queensland grants (1146504). T. Kremsmayr was supported by the Austrian Academy of Sciences through a DOC Fellowship (25139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Muttenthaler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kremsmayr, T., Muttenthaler, M. (2022). Fmoc Solid Phase Peptide Synthesis of Oxytocin and Analogues. In: Werry, E.L., Reekie, T.A., Kassiou, M. (eds) Oxytocin. Methods in Molecular Biology, vol 2384. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1759-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1759-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1758-8

  • Online ISBN: 978-1-0716-1759-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics