Skip to main content

Modeling Immune Dynamics in Plants Using JIMENA-Package

  • Protocol
  • First Online:
Modeling Transcriptional Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2328))

Abstract

Plant immunity is a highly dynamic process and requires dynamic modeling to capture the events of complexity mediated by the interaction between plant host and the attacking pathogen. The events of recognition are invoked by pathogen-based epitopes, while the subversion of host defenses are orchestrated by pathogen-originated effector molecules. The pathogen constitutes an immune signaling network inside the host cells. We model plant immune dynamics by using JIMENA-package, which is a java-based genetic regulatory network (GRN) simulation framework. It can efficiently compute network behavior and system states mediated by pathogenic perturbations. Here, we describe a step-by-step protocol to introduce the application of JIMENA-package to quantify immune dynamics in plant–pathogen interaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  2. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  3. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  4. Xin X-F, He SY (2013) Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu Rev Phytopathol 51:473–498

    Article  CAS  PubMed  Google Scholar 

  5. Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349–357

    Article  CAS  PubMed  Google Scholar 

  6. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

  7. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  8. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu W-L, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  9. Sarris PF et al (2015) A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–1100

    Article  CAS  PubMed  Google Scholar 

  10. Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  Google Scholar 

  11. Cui H, Tsuda K, Parker JE (2014) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:1–25

    Google Scholar 

  12. Dong X, Jiang Z, Peng YL, Zhang Z (2015) Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis. Plant Physiol 167(3):1186–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Naseem M, Philippi N, Hussain a, Wangorsch G, Ahmed N, Dandekar T (2012) Integrated systems view on networking by hormones in arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24:1793–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karl S, Dandekar T (2015) Jimena: efficient computing and system state identification for genetic regulatory networks. BMC Bioinformatics 14:306. https://doi.org/10.1186/1471-2105-14-306

    Article  CAS  Google Scholar 

  15. Di Cara A, Garg A, De Micheli G, Xenarios I, Mendoza L (2007) Dynamic simulation of regulatory networks using SQUAD. BMC Bioinformatics 8(1):462

    Article  PubMed  PubMed Central  Google Scholar 

  16. https://www.yworks.com/products/yed

  17. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595

    Article  CAS  PubMed  Google Scholar 

  19. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  20. Schläpfer P, Zhang P, Wang C, Kim T, Banf M, Chae L et al (2017) Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173(4):2041–2059

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kaltdorf M, Dandekar T, Naseem M (2017) Reconstruction of an immune dynamic model to simulate the contrasting role of auxin and cytokinin in plant immunity. In: Hurny A, Benková E (eds) Auxins and cytokinins in plant biology. Humana Press, New York, NY, pp 83–92

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the Land Bavaria (contribution to DFG Project number 324392634/TR221 to T.D.) for funding and are thankful for a grant from the Research Incentive Fund (R19073) and a CLUSTER grant (R20141) by Zayed University to M.N.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Dandekar or Muhammad Naseem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Osmanoglu, Ö., Shams, S., Dandekar, T., Naseem, M. (2021). Modeling Immune Dynamics in Plants Using JIMENA-Package. In: MUKHTAR, S. (eds) Modeling Transcriptional Regulation. Methods in Molecular Biology, vol 2328. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1534-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1534-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1533-1

  • Online ISBN: 978-1-0716-1534-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics