Skip to main content

Nuclear Medicine Imaging Procedures in Oncology

  • Protocol
  • First Online:
Metastasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2294))

Abstract

Nuclear medicine radionuclide imaging is a quantitative imaging modality based on radioisotope-labeled tracers which emit radiation in the form of photons used for image reconstruction. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the two noninvasive tomographic three-dimensional radionuclide imaging procedures for both clinical and preclinical settings. In this review on nuclear medicine imaging procedures in oncology, a variety of standard SPECT and PET tracers including radioiodine, 18Fluorine fluorodeoxyglucose (18F-FDG), and 68Gallium-labeled small proteins like Prostate Specific Membrane Antigen (PSMA) or somatostatin analogues and their application as targeted molecular imaging probes for improved tumor diagnosis and tumor phenotype characterization are described. Absolute and semiquantitative approaches for calculation of tracer uptake in tumors during the course of disease and during treatment allow further insight into tumor biology, and the combination of SPECT and PET with anatomical imaging procedures like computed tomography (CT) or magnetic resonance imaging (MRI) by hybrid SPECT/CT, PET/CT, and PET/MRI scanners provides both anatomical information and tumor functional characterization within one imaging session. With the recent establishment of novel molecular radiolabeled probes for specific tumor diagnosis, prognosis, and treatment monitoring, nuclear medicine has been able to establish itself as a distinct imaging modality with increased sensitivity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saha GB, Saha GB (1992) Fundamentals of nuclear pharmacy, vol 4. Springer, New York

    Book  Google Scholar 

  2. Sorenson JA, Phelps ME (1987) Physics in nuclear medicine. Grune & Stratton, New York

    Google Scholar 

  3. Lange C, Apostolova I, Lukas M, Huang KP, Hofheinz F, Gregor-Mamoudou B, Brenner W, Buchert R (2014) Performance evaluation of stationary and semi-stationary acquisition with a non-stationary small animal multi-pinhole SPECT system. Mol Imaging Biol 16(3):311–316. https://doi.org/10.1007/s11307-013-0702-3

    Article  PubMed  Google Scholar 

  4. Hameed A, Brady JJ, Dowling P, Clynes M, O’Gorman P (2014) Bone disease in multiple myeloma: pathophysiology and management. Cancer Growth Metastasis 7:33–42. https://doi.org/10.4137/CGM.S16817

    Article  PubMed  PubMed Central  Google Scholar 

  5. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F (2017) Bone metastases: an overview. Oncol Rev 11(1):43–49. https://doi.org/10.4081/oncol.2017.321

    Article  CAS  Google Scholar 

  6. Babu MCS, Garg S, Lakshmaiah KC, Babu KG, Kumar RV, Loknatha D, Abraham LJ, Rajeev LK, Lokesh KN, Rudresha AH, Rao SA (2017) Colorectal cancer presenting as bone metastasis. J Cancer Res Ther 13(1):80–83. https://doi.org/10.4103/0973-1482.181177

    Article  PubMed  Google Scholar 

  7. Khalil M (2010) Basic sciences of nuclear medicine. Springer Science & Business Media, New York

    Google Scholar 

  8. Florencio-Silva R, Sasso GRD, Sasso-Cerri E, Simoes MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. https://doi.org/10.1155/2015/421746

  9. Arbab AS, Koizumi K, Toyama K, Arai T, Araki T (1998) Technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 uptake in rat myocardial cells. J Nucl Med 39(2):266–271

    CAS  PubMed  Google Scholar 

  10. Rousset B, Dupuy C, Miot F, Dumont J (2000) Chapter 2 Thyroid hormone synthesis and secretion. In: Feingold KR, Anawalt B, Boyce A et al (eds) . Endotext, South Dartmouth (MA)

    Google Scholar 

  11. Silberstein EB, Alavi A, Balon H, Becker D, Charkes N, Clarke S, Divgi C, Donohoe K, Delbeke D, Goldsmith SJSNM (2006) Society of Nuclear Medicine Procedure Guideline for scintigraphy for differentiated papillary and follicular thyroid cancer. 8 https://s3.amazonaws.com/rdcms-snmmi/files/production/public/docs/Scintigraphy%20for%20Differentiated%20Thyroid%20Cancer%20V3%200%20(9-25-06).pdf

  12. Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, Moncayo R, Mortelmans L, Pepe G, Reske SN, Castellani MR, Chiti A, European Association for Nuclear M (2010) 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37(12):2436–2446. https://doi.org/10.1007/s00259-010-1545-7

    Article  PubMed  Google Scholar 

  13. Yu S (2006) Review of F-FDG synthesis and quality control. Biomed Imaging Interv J 2(4):e57. https://doi.org/10.2349/biij.2.4.e57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buck AK, Reske SN (2004) Cellular origin and molecular mechanisms of 18F-FDG uptake: is there a contribution of the endothelium? J Nucl Med 45(3):461–463

    CAS  PubMed  Google Scholar 

  15. Fowler JS, Ido T (2001) DESIGN AND SYNTHESIS OF 2-DEOXY-2 [{sup 18} F] FLUORO-D-GLUCOSE ({sup 18} FDG). Brookhaven National lab., Upton, NY (US)

    Google Scholar 

  16. Kawada K, Iwamoto M, Sakai Y (2016) Mechanisms underlying F-18-fluorodeoxyglucose accumulation in colorectal cancer. World J Radiol 8(11):880–886. https://doi.org/10.4329/wjr.v8.i11.880

    Article  PubMed  PubMed Central  Google Scholar 

  17. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, Stabin MG, Zubal G, Kachelriess M, Cronin V, Holbrook S (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47(5):885–895

    PubMed  Google Scholar 

  18. Kulshrestha RK, Vinjamuri S, England A, Nightingale J, Hogg P (2016) The role of 18F-sodium fluoride PET/CT bone scans in the diagnosis of metastatic bone disease from breast and prostate cancer. J Nucl Med Technol 44(4):217–222. https://doi.org/10.2967/jnmt.116.176859

    Article  PubMed  Google Scholar 

  19. Roodman GD (2004) Mechanisms of disease: Mechanisms of bone metastasis. New Engl J Med 350(16):1655–1664. https://doi.org/10.1056/NEJMra030831

    Article  CAS  PubMed  Google Scholar 

  20. Sadeghi MV, Sedaghat S (2018) Is 99m Tc-methylene diphosphonate bone scintigraphy a sensitive method for detecting bone lesions in multiple myeloma? Casp J Intern Med 9(2):140–143. https://doi.org/10.22088/cjim.9.2.140

    Article  Google Scholar 

  21. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, GTJJoNM S (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med 51(11):1813–1820

    Article  Google Scholar 

  22. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, Mischel P, Czernin J, Phelps ME, Silverman DH (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952

    CAS  PubMed  Google Scholar 

  23. Campillo N, Falcones B, Otero J, Colina R, Gozal D, Navajas D, Farre R, Almendros I (2019) Differential oxygenation in tumor microenvironment modulates macrophage and cancer cell crosstalk: novel experimental setting and proof of concept. Front Oncol 9:43. https://doi.org/10.3389/fonc.2019.00043

    Article  PubMed  PubMed Central  Google Scholar 

  24. Masaki Y, Shimizu Y, Yoshioka T, Tanaka Y, Nishijima K, Zhao S, Higashino K, Sakamoto S, Numata Y, Yamaguchi Y, Tamaki N, Kuge Y (2015) The accumulation mechanism of the hypoxia imaging probe "FMISO" by imaging mass spectrometry: possible involvement of low-molecular metabolites. Sci Rep 5:16802. https://doi.org/10.1038/srep16802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6(3):1670–1690. https://doi.org/10.3390/cancers6031670

    Article  Google Scholar 

  26. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439. https://doi.org/10.1038/nrc3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milotti E, Stella S, Chignola R (2017) Pulsation-limited oxygen diffusion in the tumour microenvironment. Sci Rep 7:39762. https://doi.org/10.1038/srep39762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl) 3:83–92. https://doi.org/10.2147/HP.S93413

    Article  Google Scholar 

  29. Xu Z, Li XF, Zou H, Sun X, Shen B (2017) 18F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget 8(55):94969–94979. https://doi.org/10.18632/oncotarget.21662

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gladson CL, Prayson RA, Liu WM (2010) The pathobiology of glioma tumors. Annu Rev Pathol 5:33–50. https://doi.org/10.1146/annurev-pathol-121808-102109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, la Fougère C, Langen K-J, Lopci E, Lowe V (2019) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18 F] FDG: version 1.0. Eur J Nucl Med Mol Imaging 46(3):540–557

    Article  CAS  Google Scholar 

  32. Maurer GD, Brucker DP, Stoffels G, Filipski K, Filss CP, Mottaghy FM, Galldiks N, Steinbach JP, Hattingen E, Langen KJ (2019) (18)F-FET PET imaging in differentiating glioma progression from treatment-related changes—a single-center experience. J Nucl Med 61:505–511. https://doi.org/10.2967/jnumed.119.234757

    Article  PubMed  Google Scholar 

  33. Ceccon G, Lazaridis L, Stoffels G, Rapp M, Weber M, Blau T, Lohmann P, Kebir S, Herrmann K, Fink GR, Langen KJ, Glas M, Galldiks N (2018) Use of FET PET in glioblastoma patients undergoing neurooncological treatment including tumour-treating fields: initial experience. Eur J Nucl Med Mol Imaging 45(9):1626–1635. https://doi.org/10.1007/s00259-018-3992-5

    Article  PubMed  Google Scholar 

  34. Pope WB, Brandal G (2018) Conventional and advanced magnetic resonance imaging in patients with high-grade glioma. Q J Nucl Med Mol Imaging 62(3):239–253. https://doi.org/10.23736/S1824-4785.18.03086-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Langen KJ, Galldiks N (2018) Update on amino acid PET of brain tumours. Curr Opin Neurol 31(4):354–361. https://doi.org/10.1097/WCO.0000000000000574

    Article  CAS  PubMed  Google Scholar 

  36. Koopman T, Verburg N, Schuit RC, Pouwels PJW, Wesseling P, Windhorst AD, Hoekstra OS, de Witt Hamer PC, Lammertsma AA, Boellaard R, Yaqub M (2018) Quantification of O-(2-[(18)F]fluoroethyl)-L-tyrosine kinetics in glioma. EJNMMI Res 8(1):72. https://doi.org/10.1186/s13550-018-0418-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stegmayr C, Bandelow U, Oliveira D, Lohmann P, Willuweit A, Filss C, Galldiks N, Lubke JH, Shah NJ, Ermert J, Langen KJ (2017) Influence of blood-brain barrier permeability on O-(2-(18)F-fluoroethyl)-L-tyrosine uptake in rat gliomas. Eur J Nucl Med Mol Imaging 44(3):408–416. https://doi.org/10.1007/s00259-016-3508-0

    Article  CAS  PubMed  Google Scholar 

  38. Chang SS (2004) Overview of prostate-specific membrane antigen. Rev Urol 6(Suppl 10):S13–S18

    PubMed  PubMed Central  Google Scholar 

  39. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, Giesel F, Haberkorn U, Hope TA, Kopka KJEjonm, imaging M (2017) 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 44(6):1014–1024

    Article  Google Scholar 

  40. Hofman MS, Lau WFE, Hicks RJ (2015) Somatostatin receptor imaging with Ga-68 DOTATATE PET/CT: clinical utility, Normal patterns, pearls, and pitfalls in interpretation. Radiographics 35(2):500–516. https://doi.org/10.1148/rg.352140164

    Article  PubMed  Google Scholar 

  41. Wild D, Bomanji JB, Benkert P, Maecke H, Ell PJ, Reubi JC, Caplin ME (2013) Comparison of Ga-68-DOTANOC and Ga-68-DOTATATE PET/CT within patients with Gastroenteropancreatic neuroendocrine tumors. J Nucl Med 54(3):364–372. https://doi.org/10.2967/jnumed.112.111724

    Article  CAS  PubMed  Google Scholar 

  42. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M, Papathanasiou ND, Pepe G, Oyen W, De Cristoforo CJEjonm, imaging M (2010) Procedure guidelines for pet/ct tumour imaging with 68 Ga-dota-conjugated peptides: 68 Ga-dota-toc, 68 Ga-dota-noc, 68 Ga-dota-tate. Eur J Nucl Med Mol Imaging 37(10):2004–2010

    Article  Google Scholar 

  43. Ro C, Chai WX, Yu VE, Yu R (2013) Pancreatic neuroendocrine tumors: biology, diagnosis, and treatment. Chin J Cancer 32(6):312–324. https://doi.org/10.5732/cjc.012.10295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jansen TJP, van Lith SAM, Boss M, Brom M, Joosten L, Behe M, Buitinga M, Gotthardt M (2019) Exendin-4 analogs in insulinoma theranostics. J Labelled Comp Radiopharm 62(10):656–672. https://doi.org/10.1002/jlcr.3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reubi JC, Waser B (2003) Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 30(5):781–793. https://doi.org/10.1007/s00259-003-1184-3

    Article  CAS  PubMed  Google Scholar 

  46. Zimmer T, Stolzel U, Bader M, Koppenhagen K, Hamm B, Buhr H, Riecken EO, Wiedenmann B (1996) Endoscopic ultrasonography and somatostatin receptor scintigraphy in the preoperative localisation of insulinomas and gastrinomas. Gut 39(4):562–568. https://doi.org/10.1136/gut.39.4.562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boss M, Buitinga M, Jansen TJP, Brom M, Visser EP, Gotthardt M (2020) PET-based human dosimetry of (68)Ga-NODAGA-Exendin-4, a tracer for beta-cell imaging. J Nucl Med 61(1):112–116. https://doi.org/10.2967/jnumed.119.228627

    Article  PubMed  PubMed Central  Google Scholar 

  48. Breun M, Monoranu CM, Kessler AF, Matthies C, Lohr M, Hagemann C, Schirbel A, Rowe SP, Pomper MG, Buck AK, Wester HJ, Ernestus RI, Lapa C (2019) [(68)Ga]-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Front Oncol 9:503. https://doi.org/10.3389/fonc.2019.00503

    Article  PubMed  PubMed Central  Google Scholar 

  49. Herrmann K, Lapa C, Wester HJ, Schottelius M, Schiepers C, Eberlein U, Bluemel C, Keller U, Knop S, Kropf S, Schirbel A, Buck AK, Lassmann M (2015) Biodistribution and radiation dosimetry for the chemokine receptor CXCR4-targeting probe 68Ga-pentixafor. J Nucl Med 56(3):410–416. https://doi.org/10.2967/jnumed.114.151647

    Article  CAS  PubMed  Google Scholar 

  50. Philipp-Abbrederis K, Herrmann K, Knop S, Schottelius M, Eiber M, Luckerath K, Pietschmann E, Habringer S, Gerngross C, Franke K, Rudelius M, Schirbel A, Lapa C, Schwamborn K, Steidle S, Hartmann E, Rosenwald A, Kropf S, Beer AJ, Peschel C, Einsele H, Buck AK, Schwaiger M, Gotze K, Wester HJ, Keller U (2015) In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. Embo Mol Med 7(4):477–487. https://doi.org/10.15252/emmm.201404698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brenner W, Vernon C, Muzi M, Mankoff DA, Link JM, Conrad EU, Eary JF (2004) Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med 45(9):1493–1500

    CAS  PubMed  Google Scholar 

  52. Weber WA, Schwaiger M, Avril N (2000) Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol 27(7):683–687. https://doi.org/10.1016/s0969-8051(00)00141-4

    Article  CAS  PubMed  Google Scholar 

  53. Graham MM, Peterson LM, Hayward RM (2000) Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol 27(7):647–655. https://doi.org/10.1016/s0969-8051(00)00143-8

    Article  CAS  PubMed  Google Scholar 

  54. Lucignani G, Paganelli G, Bombardieri E (2004) The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 25(7):651–656. https://doi.org/10.1097/01.mnm.0000134329.30912.49

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mohan, AM., Beindorff, N., Brenner, W. (2021). Nuclear Medicine Imaging Procedures in Oncology. In: Stein, U.S. (eds) Metastasis. Methods in Molecular Biology, vol 2294. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1350-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1350-4_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1349-8

  • Online ISBN: 978-1-0716-1350-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics