Skip to main content

Using d- and l-Amino Acid Oxidases to Generate the Imino Acid Substrate to Measure the Activity of the Novel Rid (Enamine/Imine Deaminase) Class of Enzymes

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2280))

Abstract

This chapter describes a method to assay the activity of reactive intermediate deaminases (Rid), a large family of conserved soluble enzymes, which have been proposed to prevent damages from metabolic intermediates such as the highly reactive and unstable compounds enamines/imines. In this method, the flavin adenine dinucleotide-dependent l- or d-amino acid oxidases generate an imino acid starting from a l- or d- amino acid, respectively. This reaction is coupled to the hydrolysis of the imino acid to the corresponding α-keto acid and ammonium ion catalyzed by a Rid enzyme. The spectrophotometric assay consists of measuring the decrease of the initial rate of formation of the semicarbazone, derived from the spontaneous reaction of the imino acid and semicarbazide, caused by the presence of the Rid enzyme. The set-up and testing of this method imply a preliminary characterization of the ability of the amino acid oxidase to release the imino acid required for the subsequent reactions. To this purpose, the activity of the l- or d-amino acid oxidases with different amino acids can be measured as production of hydrogen peroxide or formation of semicarbazone in parallel assays. The advantages and limitations of this assay of Rid activity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Crecy-Lagard V, Haas D, Hanson AD (2018) Newly-discovered enzymes that function in metabolite damage-control. Curr Opin Chem Biol 47:101–108

    Article  Google Scholar 

  2. Frelin O, Huang L, Hasnain G et al (2015) A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis. Biochem J 466(1):137–145

    Article  CAS  Google Scholar 

  3. Linster CL, Van Schaftingen E, Hanson AD (2013) Metabolite damage and its repair or pre-emption. Nat Chem Biol 9(2):72–80

    Article  CAS  Google Scholar 

  4. Peracchi A, Veiga-da-Cunha M, Kuhara T et al (2017) Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proc Natl Acad Sci U S A 114(16):E3233–E3242

    Article  CAS  Google Scholar 

  5. Borchert AJ, Ernst DC, Downs DM (2019) Reactive enamines and imines in vivo: lessons from the RidA paradigm. Trends Biochem Sci. https://doi.org/10.1016/j.tibs.2019.04.011

  6. Lambrecht JA, Flynn JM, Downs DM (2012) Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions. J Biol Chem 287(5):3454–3461

    Article  CAS  Google Scholar 

  7. Lambrecht JA, Schmitz GE, Downs DM (2013) RidA proteins prevent metabolic damage inflicted by PLP-dependent dehydratases in all domains of life. MBio 4(1):e00033–e00013

    Article  CAS  Google Scholar 

  8. Degani G, Barbiroli A, Regazzoni L et al (2018) Imine deaminase activity and conformational stability of UK114, the mammalian member of the Rid protein family active in amino acid metabolism. Int J Mol Sci 19(4):945–963

    Article  Google Scholar 

  9. Borchert AJ, Downs DM (2017) The response to 2-aminoacrylate differs in Escherichia coli and Salmonella enterica, despite shared metabolic components. J Bacteriol 199(14):e00140–e00117

    Article  CAS  Google Scholar 

  10. Borchert AJ, Downs DM (2017) Endogenously generated 2-aminoacrylate inhibits motility in Salmonella enterica. Sci Rep 7(1):12971

    Article  Google Scholar 

  11. Flynn JM, Downs DM (2013) In the absence of RidA, endogenous 2-aminoacrylate inactivates alanine racemases by modifying the pyridoxal 5′-phosphate cofactor. J Bacteriol 195(16):3603–3609

    Article  CAS  Google Scholar 

  12. Flynn JM, Christopherson MR, Downs DM (2013) Decreased coenzyme A levels in RidA mutant strains of Salmonella enterica result from inactivated serine hydroxymethyltransferase. Mol Microbiol 89(4):751–759

    Article  CAS  Google Scholar 

  13. Liu X, Zeng J, Chen X et al (2016) Crystal structures of RidA, an important enzyme for the prevention of toxic side products. Sci Rep 6:30494

    Article  CAS  Google Scholar 

  14. Niehaus TD, Gerdes S, Hodge-Hanson K et al (2015) Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family. BMC Genomics 16:382

    Article  Google Scholar 

  15. Hodge-Hanson KM, Downs DM (2017) Members of the Rid protein family have broad imine deaminase activity and can accelerate the Pseudomonas aeruginosa D-arginine dehydrogenase (DauA) reaction in vitro. PLoS One 12(9):e0185544

    Article  Google Scholar 

  16. Burman JD, Stevenson CE, Sawers RG et al (2007) The crystal structure of Escherichia coli TdcF, a member of the highly conserved YjgF/YER057c/UK114 family. BMC Struct Biol 7:30

    Article  Google Scholar 

  17. Bartorelli A, Bussolati B, Millesimo M et al (1996) Antibody-dependent cytotoxic activity on human cancer cells expressing UK 114 tumor membrane antigen. Int J Oncol 8(3):543–548

    CAS  PubMed  Google Scholar 

  18. Bartorelli A, Biancardi C, Cavalca V et al (1996) Purification and partial characterization of proteins present in a perchloric acid extract of goat liver (UK101). J Tumor Marker Oncol 11(1):57–61

    Google Scholar 

  19. Bussolati G, Geuna M, Bussolati B et al (1997) Cytolytic and tumor inhibitory antibodies against UK114 protein in the sera of cancer patients. Int J Oncol 10:779–785

    CAS  PubMed  Google Scholar 

  20. Lambrecht JA, Browne BA, Downs DM (2010) Members of the YjgF/YER057c/UK114 family of proteins inhibit phosphoribosylamine synthesis in vitro. J Biol Chem 285(45):34401–34407

    Article  CAS  Google Scholar 

  21. Ernst DC, Lambrecht JA, Schomer RA et al (2014) Endogenous synthesis of 2-aminoacrylate contributes to cysteine sensitivity in Salmonella enterica. J Bacteriol 196(18):3335–3342

    Article  Google Scholar 

  22. Niehaus TD, Nguyen TN, Gidda SK et al (2014) Arabidopsis and maize RidA proteins preempt reactive enamine/imine damage to branched-chain amino acid biosynthesis in plastids. Plant Cell 26(7):3010–3022

    Article  CAS  Google Scholar 

  23. Hafner EW, Wellner D (1979) Reactivity of the imino acids formed in the amino acid oxidase reaction. Biochemistry 18(3):411–417

    Article  CAS  Google Scholar 

  24. Campillo-Brocal JC, Lucas-Elio P, Sanchez-Amat A (2015) Distribution in different organisms of amino acid oxidases with FAD or a quinone as cofactor and their role as antimicrobial proteins in marine bacteria. Mar Drugs 13(12):7403–7418

    Article  CAS  Google Scholar 

  25. Geueke B, Hummel W (2003) Heterologous expression of Rhodococcus opacus L-amino acid oxidase in Streptomyces lividans. Protein Expr Purif 28(2):303–309

    Article  CAS  Google Scholar 

  26. Amano M, Mizuguchi H, Sano T et al (2015) Recombinant expression, molecular characterization and crystal structure of antitumor enzyme, L-lysine α-oxidase from Trichoderma viride. J Biochem 157(6):549–559

    Article  CAS  Google Scholar 

  27. Arima J, Tamura T, Kusakabe H et al (2003) Recombinant expression, biochemical characterization and stabilization through proteolysis of an L-glutamate oxidase from Streptomyces sp. X-119-6. J Biochem 134(6):805–812

    Article  CAS  Google Scholar 

  28. Hossain GS, Li J, Shin HD et al (2014) L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol 98(4):1507–1515

    Article  CAS  Google Scholar 

  29. Pollegioni L, Molla G (2011) New biotech applications from evolved D-amino acid oxidases. Trends Biotechnol 29(6):276–283

    Article  CAS  Google Scholar 

  30. Subramanian K, Gora A, Spruijt R et al (2018) Modulating D-amino acid oxidase (DAAO) substrate specificity through facilitated solvent access. PLoS One 13(6):e0198990

    Article  Google Scholar 

  31. Xu XL, Grant GA (2016) Mutagenic and chemical analyses provide new insight into enzyme activation and mechanism of the type 2 iron-sulfur L-serine dehydratase from Legionella pneumophila. Arch Biochem Biophys 596:108–117

    Article  CAS  Google Scholar 

  32. Takahashi S, Abe K, Kera Y (2015) Bacterial D-amino acid oxidases: recent findings and future perspectives. Bioengineered 6(4):237–241

    Article  CAS  Google Scholar 

  33. Curti B, Ronchi S, Branzoli U et al (1973) Improved purification, amino acid analysis and molecular weight of homogenous D-amino acid oxidase from pig kidney. Biochim Biophys Acta 327(2):266–273

    Article  CAS  Google Scholar 

  34. Hillebrand GG, Dye JL, Suelter CH (1979) Formation of an intermediate and its rate of conversion to pyruvate during the tryptophanase-catalyzed degradation of S-o-nitrophenyl-L-cysteine. Biochemistry 18(9):1751–1755

    Article  CAS  Google Scholar 

  35. Vanoni MA, Curti B (2007) D-amino acid oxidase activity assays. In: Konno R (ed) D-amino acids: a new frontier in amino acid and protein research. Hauppauge, Nova Science Publishers, pp 467–476

    Google Scholar 

  36. Rosini E, Caldinelli L, Piubelli L (2017) Assays of D-amino acid oxidase activity. Front Mol Biosci 4:102

    Article  Google Scholar 

  37. Bayse GS, Michaels AW, Morrison M (1972) The peroxidase-catalyzed oxidation of tyrosine. Biochim Biophys Acta 284(1):34–42

    Article  CAS  Google Scholar 

  38. Cook PF, Cleland WW (2007) Enzyme kinetics and mechanism. Chapter 3 Enzyme assays. Garland Science, New York

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Alberto Bartorelli Cusani and Dr. Francesco Baggi Sisini for the generous financial support to this research. We wish to thank Mr. Alessandro Lucini Paioni for the assistance in the enzymatic assays. S.D. is a recipient of a fellowship financed by Alalia S.r.l (Turin, Italy). G.D. is a recipient of a Post-Doctoral fellowship from the University of Milan (Italy). Stefania Digiovanni and Genny Degani contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Popolo or Maria Antonietta Vanoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Digiovanni, S., Degani, G., Popolo, L., Vanoni, M.A. (2021). Using d- and l-Amino Acid Oxidases to Generate the Imino Acid Substrate to Measure the Activity of the Novel Rid (Enamine/Imine Deaminase) Class of Enzymes. In: Barile, M. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 2280. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1286-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1286-6_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-0716-1285-9

  • Online ISBN: 978-1-0716-1286-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics