Skip to main content

Isolation of Mitochondria-Associated ER Membranes (MAMs), Synaptic MAMs, and Glycosphingolipid Enriched Microdomains (GEMs) from Brain Tissues and Neuronal Cells

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2277))

Abstract

Subcellular fractionation is a valuable procedure in cell biology to separate and purify various subcellular constituents from one another, i.e., nucleus, cytosol, membranes/organelles, and cytoskeleton. The procedure relies on the use of differential centrifugation of cell and tissue homogenates. Fractionated subcellular organelles may be subjected to additional purification steps that enable the isolation of specific cellular sub-compartments, including interorganellar membrane contact sites. Here we outline a protocol tailored to the isolation of mitochondria, mitochondria-associated ER membranes (MAMs), and glycosphingolipid enriched microdomains (GEMs) from the adult mouse brain, primary neurospheres, and murine embryonic fibroblasts (MEFs). We also provide a detailed protocol for the purification of synaptosomes and their corresponding MAMs .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simmen T, Tagaya M (2017) Organelle communication at membrane contact sites (MCS): from curiosity to center stage in cell biology and biomedical research. Adv Exp Med Biol 997:1–12. https://doi.org/10.1007/978-981-10-4567-7_1

    Article  CAS  PubMed  Google Scholar 

  2. Prinz WA (2014) Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J Cell Biol 205(6):759–769. https://doi.org/10.1083/jcb.201401126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17(2):69–82. https://doi.org/10.1038/nrm.2015.8

    Article  CAS  PubMed  Google Scholar 

  4. Gatta AT, Levine TP (2017) Piecing together the patchwork of contact sites. Trends Cell Biol 27(3):214–229. https://doi.org/10.1016/j.tcb.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  5. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B (2013) Organization and function of membrane contact sites. Biochim Biophys Acta 1833:2526–2541. https://doi.org/10.1016/j.bbamcr.2013.01.028

    Article  CAS  PubMed  Google Scholar 

  6. Levine TP, Patel S (2016) Signalling at membrane contact sites: two membranes come together to handle second messengers. Curr Opin Cell Biol 39:77–83. https://doi.org/10.1016/j.ceb.2016.02.011

    Article  CAS  PubMed  Google Scholar 

  7. Wu H, Carvalho P, Voeltz GK (2018) Here, there, and everywhere: the importance of ER membrane contact sites. Science 361(6401):eaan5835. https://doi.org/10.1126/science.aan5835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stefan CJ, Manford AG, Emr SD (2013) ER-PM connections: sites of information transfer and inter-organelle communication. Curr Opin Cell Biol 25:434–442. https://doi.org/10.1016/j.ceb.2013.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen YJ, Quintanilla CG, Liou J (2019) Recent insights into mammalian ER-PM junctions. Curr Opin Cell Biol 57:99–105. https://doi.org/10.1016/j.ceb.2018.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saheki Y, De Camilli P (2017) Endoplasmic Reticulum-Plasma Membrane Contact Sites. Annu Rev Biochem 86:659–684. https://doi.org/10.1146/annurev-biochem-061516-044932

    Article  CAS  PubMed  Google Scholar 

  11. Annunziata I, Sano R, d'Azzo A (2018) Mitochondria-associated ER membranes (MAMs) and lysosomal storage diseases. Cell Death Dis 9(3):328. https://doi.org/10.1038/s41419-017-0025-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernard-Marissal N, Chrast R, Schneider BL (2018) Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship? Cell Death Dis 9(3):333. https://doi.org/10.1038/s41419-017-0125-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gomez-Suaga P, Bravo-San Pedro JM, Gonzalez-Polo RA, Fuentes JM, Niso-Santano M (2018) ER-mitochondria signaling in Parkinson’s disease. Cell Death Dis 9(3):337. https://doi.org/10.1038/s41419-017-0079-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grimm S (2011) The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 1823(2):327–334. https://doi.org/10.1016/j.bbamcr.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  15. Vance JE, Stone SJ, Faust JR (1997) Abnormalities in mitochondria-associated membranes and phospholipid biosynthetic enzymes in the mnd/mnd mouse model of neuronal ceroid lipofuscinosis. Biochim Biophys Acta 1344(3):286–299

    Article  CAS  PubMed  Google Scholar 

  16. Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    Article  CAS  PubMed  Google Scholar 

  17. Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    Article  CAS  PubMed  Google Scholar 

  18. Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19(2):81–88. https://doi.org/10.1016/j.tcb.2008.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d'Azzo A (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36(3):500–511. https://doi.org/10.1016/j.molcel.2009.10.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dickson EJ, Jensen JB, Vivas O, Kruse M, Traynor-Kaplan AE, Hille B (2016) Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides. J Cell Biol 213(1):33–48. https://doi.org/10.1083/jcb.201508106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gatta AT, Wong LH, Sere YY, Calderon-Norena DM, Cockcroft S, Menon AK, Levine TP (2015) A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife 4. https://doi.org/10.7554/eLife.07253

  22. Chung WY, Jha A, Ahuja M, Muallem S (2017) Ca(2+) influx at the ER/PM junctions. Cell Calcium 63:29–32. https://doi.org/10.1016/j.ceca.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pichler H, Gaigg B, Hrastnik C, Achleitner G, Kohlwein SD, Zellnig G, Perktold A, Daum G (2001) A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. Eur J Biochem 268(8):2351–2361

    Article  CAS  PubMed  Google Scholar 

  24. Lahiri S, Chao JT, Tavassoli S, Wong AK, Choudhary V, Young BP, Loewen CJ, Prinz WA (2014) A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol 12(10):e1001969. https://doi.org/10.1371/journal.pbio.1001969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rusinol AE, Cui Z, Chen MH, Vance JE (1994) A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem 269(44):27494–27502

    Article  CAS  PubMed  Google Scholar 

  26. Sezgin E, Levental I, Mayor S, Eggeling C (2017) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18(6):361–374. https://doi.org/10.1038/nrm.2017.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Toulmay A, Prinz WA (2011) Lipid transfer and signaling at organelle contact sites: the tip of the iceberg. Curr Opin Cell Biol 23(4):458–463. https://doi.org/10.1016/j.ceb.2011.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Csordas G, Hajnoczky G (2009) SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta 1787(11):1352–1362. https://doi.org/10.1016/j.bbabio.2009.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Csordas G, Varnai P, Golenar T, Roy S, Purkins G, Schneider TG, Balla T, Hajnoczky G (2010) Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39(1):121–132. https://doi.org/10.1016/j.molcel.2010.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32(5-6):269–278

    Article  CAS  PubMed  Google Scholar 

  31. Rieusset J, Fauconnier J, Paillard M, Belaidi E, Tubbs E, Chauvin MA, Durand A, Bravard A, Teixeira G, Bartosch B, Michelet M, Theurey P, Vial G, Demion M, Blond E, Zoulim F, Gomez L, Vidal H, Lacampagne A, Ovize M (2016) Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 59(3):614–623. https://doi.org/10.1007/s00125-015-3829-8

    Article  CAS  PubMed  Google Scholar 

  32. Wang HJ, Guay G, Pogan L, Sauve R, Nabi IR (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150(6):1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yi MWD, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167(4):661–672. https://doi.org/10.1083/jcb.200406038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scorrano L, De Matteis MA, Emr S, Giordano F, Hajnoczky G, Kornmann B, Lackner LL, Levine TP, Pellegrini L, Reinisch K, Rizzuto R, Simmen T, Stenmark H, Ungermann C, Schuldiner M (2019) Coming together to define membrane contact sites. Nat Commun 10(1):1287. https://doi.org/10.1038/s41467-019-09253-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lau DHW, Hartopp N, Welsh NJ, Mueller S, Glennon EB, Morotz GM, Annibali A, Gomez-Suaga P, Stoica R, Paillusson S, Miller CCJ (2018) Disruption of ER-mitochondria signalling in fronto-temporal dementia and related amyotrophic lateral sclerosis. Cell Death Dis 9(3):327. https://doi.org/10.1038/s41419-017-0022-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362. https://doi.org/10.1126/science.1207385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Michelsen U, von Hagen J (2009) Isolation of subcellular organelles and structures. Methods Enzymol 463:305–328. https://doi.org/10.1016/S0076-6879(09)63019-6

    Article  CAS  PubMed  Google Scholar 

  38. Annunziata I, Patterson A, d'Azzo A (2013) Mitochondria-associated ER membranes (MAMs) and glycosphingolipid enriched microdomains (GEMs): isolation from mouse brain. J Vis Exp 73:e50215. https://doi.org/10.3791/50215

    Article  CAS  Google Scholar 

  39. Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265(13):7248–7256

    Article  CAS  PubMed  Google Scholar 

  40. Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G, Simmen T (2008) The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell 19(7):2777–2788. https://doi.org/10.1091/mbc.E07-10-0995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and bid-mediated apoptosis. EMBO J 24(4):717–729. https://doi.org/10.1038/sj.emboj.7600559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456(7222):605–610. https://doi.org/10.1038/nature07534

    Article  CAS  PubMed  Google Scholar 

  43. Wieckowski MR, Giorgi C, Lebiedzinska M, Duszynski J, Pinton P (2009) Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat Protoc 4(11):1582–1590. https://doi.org/10.1038/nprot.2009.151

    Article  CAS  PubMed  Google Scholar 

  44. Gomez-Suaga P, Perez-Nievas BG, Glennon EB, Lau DHW, Paillusson S, Morotz GM, Cali T, Pizzo P, Noble W, Miller CCJ (2019) The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathol Commun 7(1):35. https://doi.org/10.1186/s40478-019-0688-4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pizzo P, Giurisato E, Bigsten A, Tassi M, Tavano R, Shaw A, Viola A (2004) Physiological T cell activation starts and propagates in lipid rafts. Immunol Lett 91(1):3–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Camenzind G. Robinson (Director of Electron Microscopy Shared Resource at SJCRH) for his guidance and skillful help in acquiring the TEM images. A.d’A. holds the Jewelers For Children (JFC) Endowed Chair in Genetics and Gene Therapy. This work was funded in part by the NIH grant GM104981, CA021765, the National Tay-Sachs & Allied Diseases Association (NTSAD), the Assisi Foundation of Memphis, and the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra d’Azzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Annunziata, I., Weesner, J.A., d’Azzo, A. (2021). Isolation of Mitochondria-Associated ER Membranes (MAMs), Synaptic MAMs, and Glycosphingolipid Enriched Microdomains (GEMs) from Brain Tissues and Neuronal Cells. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 2277. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1270-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1270-5_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1269-9

  • Online ISBN: 978-1-0716-1270-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics