Skip to main content

Qualitative Characterization of the Rat Liver Mitochondrial Lipidome Using All Ion Fragmentation on an Exactive Benchtop Orbitrap MS

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2275))

Abstract

Untargeted lipidomics profiling by liquid chromatography –mass spectrometry (LC-MS) allows researchers to observe the occurrences of lipids in a biological sample without showing intentional bias to any specific class of lipids and allows retrospective reanalysis of data collected. Typically, and in the specific method described, a general extraction method followed by LC separation is used to achieve nonspecific class coverage of the lipidome prior to high resolution accurate mass (HRAM) MS detection . Here we describe a workflow including the isolation of mitochondria from liver tissue, followed by mitochondrial lipid extraction and the LC-MS conditions used for data acquisition. We also highlight how, in this method, all ion fragmentation can be used to identify species of lower abundances, often missed by data dependent fragmentation techniques. Here we describe the isolation of mitochondria from liver tissue, followed by mitochondrial lipid extraction and the LC-MS conditions used for data acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  Google Scholar 

  2. Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    Article  CAS  Google Scholar 

  3. Osman C, Voelker D, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192:7–16

    Article  CAS  Google Scholar 

  4. Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52:590–614

    Article  CAS  Google Scholar 

  5. Claypool SM, Koehler CM (2012) The complexity of cardiolipin in health and disease. Trends Biochem Sci 37:32–41

    Article  CAS  Google Scholar 

  6. Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schagger H (2003) Cardiolipin stabilizes respiratory chain supracomplexes. J Biol Chem 278:52873–52880

    Article  CAS  Google Scholar 

  7. Klingenberg M (2009) Cardiolipin and mitochondrial carriers. Biochim Biophys Acta 1788:2048–2058

    Article  CAS  Google Scholar 

  8. Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    Article  CAS  Google Scholar 

  9. Kameoka S, Adachi Y, Okamoto K, Iijima M, Sesaki H (2018) Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol 28:67–76

    Article  CAS  Google Scholar 

  10. Lesnefsky EJ, Hoppel CH (2008) Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat. Biochim Biophys Acta 1777:1020–1027

    Article  CAS  Google Scholar 

  11. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  Google Scholar 

  12. Stavrovskaya IG, Baranov SV, Guo X, Davies SS, Roberts LJ 2nd, Kristal BS (2010) Reactive gamma-ketoaldehydes formed via the isoprostane pathway disrupt mitochondrial respiration and calcium homeostasis. Free Radic Biol Med 49:567–579

    Article  CAS  Google Scholar 

  13. Keller JN, Mattson MP (1998) Roles of lipid peroxidation in modulation of cellular signalling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci 9:105–116

    Article  CAS  Google Scholar 

  14. Kristal BS, Park BK, Yu BP (1996) 4-Hydroxynonenal is a potent inducer of the mitochondrial permeability transition. J Biol Chem 271:6033–6038

    Article  CAS  Google Scholar 

  15. Ejsing CS, Moehring T, Bahr U, Duchoslav E, Karas M, Simons K, Shevchenko A (2006) Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry. J Mass Spectrom 41:372–389

    Article  CAS  Google Scholar 

  16. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703

    Article  CAS  Google Scholar 

  17. Picotti P, Clément-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW, Röst H, Sun Z, Rinner O, Reiter L, Shen Q, Michaelson JJ, Frei A, Alberti S, Kusebauch U, Wollscheid B, Moritz RL, Beyer A, Aebersold RA (2013) Complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270

    Article  CAS  Google Scholar 

  18. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–861

    Article  CAS  Google Scholar 

  19. Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011) Lipidomics profiling by high-resolution LC-MS and high-energy collisional dissociation fragmentation: focus on characterization of mitochondrial cardiolipins and monolysocardiolipins. Anal Chem 83:940–949

    Article  CAS  Google Scholar 

  20. Bird SS, Marur VR, Sniatynski MJ, Greenberg HK, Kristal BS (2011) Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: focus on triglyceride detection and characterization. Anal Chem 83:6648–6657

    Article  CAS  Google Scholar 

  21. Gregory KE, Bird SS, Gross VS, Marur VR, Lazarev AV, Walker WA, Kristal BS (2013) Method development for fecal lipidomics profiling. Anal Chem 85:1114–1123

    Article  CAS  Google Scholar 

  22. Stavrovskaya IG, Bird SS, Marur VR, Sniatynski MJ, Baranov SV, Greenberg HK, Porter CL, Kristal BS (2013) Dietary macronutrients modulate the fatty acyl composition of rat liver mitochondrial cardiolipins. J Lipid Res 54:2623–2635

    Article  CAS  Google Scholar 

  23. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN: a metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  CAS  Google Scholar 

  24. Stavrovskaya IG, Narayanan MV, Zhang W, Krasnikov BF, Heemskerk J, Young SS, Blass JP, Brown AM, Beal MF, Friedlander RM, Kristal BS (2004) Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J Exp Med 200:211–222

    Article  CAS  Google Scholar 

  25. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603–D610

    Article  CAS  Google Scholar 

  26. Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35:W606–W612

    Article  Google Scholar 

  27. Gathungu RM, Larrea P, Sniatynski MJ, Marur VR, Bowden JA, Koelmel JP, Starke-Reed P, Hubbard VS, Kristal BS (2018) Optimization of electrospray ionization source parameters for lipidomics to reduce misannotation of in-source fragments as precursor ions. Anal Chem 90:13523–13532

    Article  CAS  Google Scholar 

  28. Criscuolo A, Zeller M, Fedorova M (2020) Evaluation of lipid in-source fragmentation on different orbitrap-based mass spectrometers. J Am Soc Mass Spectrom 31:463–466

    Article  CAS  Google Scholar 

  29. Höring M, Ejsing CS, Hermansson M, Liebisch G (2019) Quantification of cholesterol and cholesteryl ester by direct flow injection high-resolution Fourier transform mass spectrometry utilizing species-specific response factors. Anal Chem 91:3459–3466

    Article  Google Scholar 

Download references

Acknowledgments

These studies were funded by U01-ES16048 (BSK, PI) and P30-DK040561 (W. Allan Walker, PI). The authors thank ThermoFisher for the loan of an Exactive Benchtop orbitrap for demonstration testing (later purchased) and financial support for scientific meeting attendance.

Financial Disclosures

IGS and RMG have no financial disclosures.

SSB currently works for ThermoFisher.

BSK is the inventor of general metabolomics-related IP that has been licensed to Metabolon via Weill Medical College of Cornell University, for which he receives royalty payments via Weill Medical College of Cornell University. He also has a small equity interest in the company. Metabolon offers biochemical profiling services and is developing molecular diagnostic assays detecting and monitoring disease. Metabolon has no rights or proprietary access to the research results presented and/or new IP generated under these grants/studies. BSK’s interests were reviewed by the Brigham and Women’s Hospital and Partners Healthcare in accordance with their institutional policy. Accordingly, upon review, the institution determined that BSK’s financial interest in Metabolon does not create a significant financial conflict of interest (FCOI) with this research. The addition of this statement where appropriate was explicitly requested and approved by BWH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce S. Kristal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stavrovskaya, I.G., Gathungu, R.M., Bird, S.S., Kristal, B.S. (2021). Qualitative Characterization of the Rat Liver Mitochondrial Lipidome Using All Ion Fragmentation on an Exactive Benchtop Orbitrap MS . In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine . Methods in Molecular Biology, vol 2275. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1262-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1262-0_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1261-3

  • Online ISBN: 978-1-0716-1262-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics