Skip to main content

Isolation of Mouse Growth Plate and Articular Chondrocytes for Primary Cultures

  • Protocol
  • First Online:
Chondrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2245))

Abstract

Cartilage is a connective tissue presenting in several forms that are all essential components of the vertebrate skeleton. Complementing in vivo models, cultures of its resident cells—chondrocytes—are important experimental models in mechanistic and preclinical studies relevant to skeletal development and adult homeostasis and to such human pathologies as chondrodysplasias and osteoarthritis. Both growth plate and articular chondrocytes produce pancartilaginous extracellular matrix components, but the two cell subtypes also have distinct phenotypic properties that account for different structural features, functions, and fates of their tissues. Based on study goals, primary chondrocyte cultures should therefore be established from either growth plate or articular cartilage. Here, we describe the methods used in our laboratory to isolate and culture growth plate and articular chondrocytes from neonatal and adult mice, respectively. Both methods involve manual and enzymatic procedures to clean cartilage samples from contaminating tissues and to release chondrocytes as single-cell suspensions from their cartilage matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olsen B, Reginato A, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  CAS  Google Scholar 

  2. Long F, Ornitz D (2013) Development of the endochondral skeleton. Cold Spring Harb Perspect Biol 5:a008334

    Article  Google Scholar 

  3. Baron J, Savendahl L, De Luca F, Dauber A, Phillip M, Wit JM, Nilsson O (2015) Short and tall stature: a new paradigm emerges. Nat Rev Endocrinol 11(12):735–746. https://doi.org/10.1038/nrendo.2015.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A(5):943–968. https://doi.org/10.1002/ajmg.a.33909

    Article  CAS  PubMed  Google Scholar 

  5. Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11(3):224. https://doi.org/10.1186/ar2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Houard X, Goldring MB, Berenbaum F (2013) Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 15(11):375. https://doi.org/10.1007/s11926-013-0375-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P, Mobasheri A (2015) Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci 16(3):6093–6112. https://doi.org/10.3390/ijms16036093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M, Bridgett L, Williams S, Guillemin F, Hill CL, Laslett LL, Jones G, Cicuttini F, Osborne R, Vos T, Buchbinder R, Woolf A, March L (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73(7):1323–1330. https://doi.org/10.1136/annrheumdis-2013-204763

    Article  PubMed  Google Scholar 

  9. Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35(4):401–404. https://doi.org/10.1016/s1357-2725(02)00301-1

    Article  CAS  PubMed  Google Scholar 

  10. Eyre DR, Weis MA, Wu JJ (2006) Articular cartilage collagen: an irreplaceable framework? Eur Cell Mater 12:57–63. https://doi.org/10.22203/ecm.v012a07

    Article  CAS  PubMed  Google Scholar 

  11. Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28(5):385–397. https://doi.org/10.1002/jemt.1070280505

    Article  CAS  PubMed  Google Scholar 

  12. Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD (2005) The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 115(3):622–631. https://doi.org/10.1172/JCI22263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O'Keefe RJ, Puzas JE, Loveys L, Hicks DG, Rosier RN (1994) Analysis of type II and type X collagen synthesis in cultured growth plate chondrocytes by in situ hybridization: rapid induction of type X collagen in culture. J Bone Miner Res 9(11):1713–1722. https://doi.org/10.1002/jbmr.5650091107

    Article  CAS  PubMed  Google Scholar 

  14. Thysen S, Luyten FP, Lories RJ (2015) Targets, models and challenges in osteoarthritis research. Dis Model Mech 8(1):17–30. https://doi.org/10.1242/dmm.016881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zigon-Branc S, Jeras M, Blejec A, Barlic A (2017) Applicability of human osteoarthritic chondrocytes for in vitro efficacy testing of anti-TNFalpha drugs. Biologicals 45:96–101. https://doi.org/10.1016/j.biologicals.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  16. Santoro A, Conde J, Scotece M, Abella V, Lopez V, Pino J, Gomez R, Gomez-Reino JJ, Gualillo O (2015) Choosing the right chondrocyte cell line: Focus on nitric oxide. J Orthop Res 33(12):1784–1788. https://doi.org/10.1002/jor.22954

    Article  CAS  PubMed  Google Scholar 

  17. Grundmann K, Zimmermann B, Barrach HJ, Merker HJ (1980) Behaviour of epiphyseal mouse chondrocyte populations in monolayer culture. Morphological and immunohistochemical studies. Virchows Arch A Pathol Anat Histol 389(2):167–187. https://doi.org/10.1007/bf00439484

    Article  CAS  PubMed  Google Scholar 

  18. Lefebvre V, Peeters-Joris C, Vaes G (1990) Production of collagens, collagenase and collagenase inhibitor during the dedifferentiation of articular chondrocytes by serial subcultures. Biochim Biophys Acta 1051(3):266–275. https://doi.org/10.1016/0167-4889(90)90132-w

    Article  CAS  PubMed  Google Scholar 

  19. Marijnissen WJ, van Osch GJ, Aigner J, Verwoerd-Verhoef HL, Verhaar JA (2000) Tissue-engineered cartilage using serially passaged articular chondrocytes. Chondrocytes in alginate, combined in vivo with a synthetic (E210) or biologic biodegradable carrier (DBM). Biomaterials 21(6):571–580. https://doi.org/10.1016/s0142-9612(99)00218-5

    Article  CAS  PubMed  Google Scholar 

  20. Lefebvre V, Garofalo S, Zhou G, Metsaranta M, Vuorio E, De Crombrugghe B (1994) Characterization of primary cultures of chondrocytes from type II collagen/beta-galactosidase transgenic mice. Matrix Biol 14(4):329–335. https://doi.org/10.1016/0945-053x(94)90199-6

    Article  CAS  PubMed  Google Scholar 

  21. Gosset M, Berenbaum F, Thirion S, Jacques C (2008) Primary culture and phenotyping of murine chondrocytes. Nat Protoc 3(8):1253–1260. https://doi.org/10.1038/nprot.2008.95

    Article  CAS  PubMed  Google Scholar 

  22. Mirando AJ, Dong Y, Kim J, Hilton MJ (2014) Isolation and culture of murine primary chondrocytes. Methods Mol Biol 1130:267–277. https://doi.org/10.1007/978-1-62703-989-5_20

    Article  CAS  PubMed  Google Scholar 

  23. Jonason JH, Hoak D, O'Keefe RJ (2015) Primary murine growth plate and articular chondrocyte isolation and cell culture. Methods Mol Biol 1226:11–18. https://doi.org/10.1007/978-1-4939-1619-1_2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AR072649 to V.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Lefebvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Haseeb, A., Lefebvre, V. (2021). Isolation of Mouse Growth Plate and Articular Chondrocytes for Primary Cultures. In: Haqqi, T.M., Lefebvre, V. (eds) Chondrocytes. Methods in Molecular Biology, vol 2245. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1119-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1119-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1118-0

  • Online ISBN: 978-1-0716-1119-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics