Skip to main content

Development of a huBLT Mouse Model to Study HCMV Latency, Reactivation, and Immune Response

  • Protocol
  • First Online:
Human Cytomegaloviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2244))

Abstract

Immunodeficient mice engrafted with human tissues provide a robust model for the in vivo investigation of human-restricted viruses such as human cytomegalovirus (HCMV). Several humanized mouse models have been developed and improved over the last 30 years. Here, we describe a protocol for the transplant of human hematopoietic stem cells with autologous fetal liver and thymic tissues into NOD.Cg-PrkdcscidIL2rγtm1Wjl mice to create a humanized bone marrow–liver–thymus model (huBLT) that can be infected with HCMV. The presence of human thymus allows the development of a functional human immune system, including HLA-restricted human T-cells and B-cells. Indeed, following infection, huBLT mice generate virus-specific CD4+ and CD8+ T-cell responses. Additionally, both HCMV-specific IgM and IgG B-cell responses can be detected. This huBLT model provides the first animal model to explore the adaptive human immune response to HCMV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cannon MJ, Schmid DS, Hyde TB (2010) Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20(4):202–213. https://doi.org/10.1002/rmv.655

    Article  PubMed  Google Scholar 

  2. Griffiths P, Baraniak I, Reeves M (2015) The pathogenesis of human cytomegalovirus. J Pathol 235(2):288–297. https://doi.org/10.1002/path.4437

    Article  CAS  PubMed  Google Scholar 

  3. Goodrum F (2016) Human cytomegalovirus latency: approaching the Gordian knot. Annu Rev Virol 3(1):333–357. https://doi.org/10.1146/annurev-virology-110615-042422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mocarski ES, Bonyhadi M, Salimi S, McCune JM, Kaneshima H (1993) Human cytomegalovirus in a SCID-hu mouse: thymic epithelial cells are prominent targets of viral replication. Proc Natl Acad Sci U S A 90(1):104–108

    Article  CAS  Google Scholar 

  5. Brown J, Kaneshima H, Mocarski E (1995) Dramatic interstrain differences in the replication of human cytomegalovirus in SCID-hu mice. J Infect Dis 171(6):1599–1603

    Article  CAS  Google Scholar 

  6. Dulal K, Cheng T, Yang L, Wang W, Huang Y, Silver B, Selariu A, Xie C, Wang D, Espeseth A, Lin Y, Wen L, Xia N, Fu T-M, Zhu H (2016) Functional analysis of human cytomegalovirus UL/b′ region using SCID-hu mouse model. J Med Virol 88(8):1417–1426. https://doi.org/10.1002/jmv.24484

    Article  CAS  PubMed  Google Scholar 

  7. Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12(11):786–798

    Article  CAS  Google Scholar 

  8. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human Hemopoietic stem cells. J Immunol 174(10):6477–6489. https://doi.org/10.4049/jimmunol.174.10.6477

    Article  CAS  PubMed  Google Scholar 

  9. Shultz LD, Keck J, Burzenski L, Jangalwe S, Vaidya S, Greiner DL, Brehm MA (2019) Humanized mouse models of immunological diseases and precision medicine. Mamm Genome 30(5-6):123–142. https://doi.org/10.1007/s00335-019-09796-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crawford LB, Streblow DN, Hakki M, Nelson JA, Caposio P (2015) Humanized mouse models of human cytomegalovirus infection. Curr Opin Virol 13:86–92. https://doi.org/10.1016/j.coviro.2015.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith MS, Goldman DC, Bailey AS, Pfaffle DL, Kreklywich CN, Spencer DB, Othieno FA, Streblow DN, Garcia JV, Fleming WH, Nelson JA (2010) Granulocyte-Colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe 8(3):284–291

    Article  CAS  Google Scholar 

  12. Umashankar M, Petrucelli A, Cicchini L, Caposio P, Kreklywich CN, Rak M, Bughio F, Goldman DC, Hamlin KL, Nelson JA, Fleming WH, Streblow DN, Goodrum F (2011) A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection. PLoS Pathog 7(12):e1002444. https://doi.org/10.1371/journal.ppat.1002444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caviness K, Bughio F, Crawford LB, Streblow DN, Nelson JA, Caposio P, Goodrum F (2016) Complex interplay of the UL136 isoforms balances cytomegalovirus replication and latency. MBio 7(2):e01986. https://doi.org/10.1128/mBio.01986-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Theobald SJ, Khailaie S, Meyer-Hermann M, Volk V, Olbrich H, Danisch S, Gerasch L, Schneider A, Sinzger C, Schaudien D, Lienenklaus S, Riese P, Guzman CA, Figueiredo C, von Kaisenberg C, Spineli LM, Glaesener S, Meyer-Bahlburg A, Ganser A, Schmitt M, Mach M, Messerle M, Stripecke R (2018) Signatures of T and B cell development, functional responses and PD-1 upregulation after HCMV latent infections and reactivations in nod.Rag.Gamma mice humanized with cord blood CD34+ cells. Front Immunol 9:2734. https://doi.org/10.3389/fimmu.2018.02734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crawford LB, Kim JH, Collins-McMillen D, Lee B-J, Landais I, Held C, Nelson JA, Yurochko AD, Caposio P (2018) Human cytomegalovirus encodes a novel FLT3 receptor ligand necessary for hematopoietic cell differentiation and viral reactivation. MBio 9:2. https://doi.org/10.1128/mBio.00682-18

    Article  Google Scholar 

  16. Vashee S, Stockwell TB, Alperovich N, Denisova EA, Gibson DG, Cady KC, Miller K, Kannan K, Malouli D, Crawford LB, Voorhies AA, Bruening E, Caposio P, Früh K (2017) Cloning, assembly, and modification of the primary human cytomegalovirus isolate Toledo by yeast-based transformation-associated recombination. mSphere 2(5):e00331–e00317. https://doi.org/10.1128/mSphereDirect.00331-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crawford LB, Tempel R, Streblow DN, Kreklywich C, Smith P, Picker LJ, Nelson JA, Caposio P (2017) Human cytomegalovirus induces cellular and humoral virus-specific immune responses in humanized BLT mice. Sci Rep 7(1):937. https://doi.org/10.1038/s41598-017-01051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aryee K-E, Shultz LD, Brehm MA (2014) Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development. Methods Mol Biol 1185:267–278. https://doi.org/10.1007/978-1-4939-1133-2_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vatakis DN, Bristol GC, Kim SG, Levin B, Liu W, Radu CG, Kitchen SG, Zack JA (2012) Using the BLT humanized mouse as a stem cell based gene therapy tumor model. J Vis Exp 70:e4181. https://doi.org/10.3791/4181

    Article  CAS  Google Scholar 

  20. Zhen A, Rezek V, Youn C, Rick J, Lam B, Chang N, Zack J, Kamata M, Kitchen S (2016) Stem-cell based engineered immunity against HIV infection in the humanized mouse model. J Vis Exp 113:e54048. https://doi.org/10.3791/54048

    Article  CAS  Google Scholar 

  21. Lavender KJ, Pang WW, Messer RJ, Duley AK, Race B, Phillips K, Scott D, Peterson KE, Chan CK, Dittmer U, Dudek T, Allen TM, Weissman IL, Hasenkrug KJ (2013) BLT-humanized C57BL/6 Rag2−/−γc−/-CD47−/− mice are resistant to GVHD and develop B and T cell immunity to HIV infection. Blood 122(25):4013–4020. https://doi.org/10.1182/blood-2013-06-506949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank L. Drew Martin, DVM, DACLAM for veterinary oversight in setting up these protocols; and Christopher Parkins, Andrew Pham, and Rebecca Tempel, PhD for technical assistance on various cohorts of huBLT mice. This work was supported by NIH funding P01 AI127335.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Caposio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crawford, L.B., Caposio, P. (2021). Development of a huBLT Mouse Model to Study HCMV Latency, Reactivation, and Immune Response. In: Yurochko, A.D. (eds) Human Cytomegaloviruses. Methods in Molecular Biology, vol 2244. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1111-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1111-1_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1110-4

  • Online ISBN: 978-1-0716-1111-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics