Skip to main content

Strategies to Modulate the Blood-Brain Barrier for Directed Brain Tumor Targeting

  • Protocol
  • First Online:
Nanotherapy for Brain Tumor Drug Delivery

Abstract

Glioblastoma (GBM) is the most common and aggressive primary brain tumors in adults. Despite being one of the most genetically and molecularly characterized tumors, patient prognosis remains dismal. Many factors have contributed to the challenges of developing effective clinical therapies, such as tumor heterogeneity, immune-suppressive microenvironment, and therapy resistance. From the perspective of therapeutics delivery, one of the main obstacles is to get newly discovered therapeutic agents across the blood-brain barrier (BBB) to penetrate the brain parenchyma. In this context, this book chapter provides an overview of three different strategies of delivering antitumor agents intended to circumvent the BBB and highlight the strengths and weakness of each approach.

Author Contributions

Conceptualization: PS, MLV, RA, HS, HC, AQH. Formal Analysis: PS, MLV, RA, HS. Writing: PS, MLV, RA, HS. Visualization: PS, MLV, RA. Supervision: AQH, HC. Funding Acquisition: AQH, HC. Resources: AQH, HC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H (2018) Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(1). https://doi.org/10.1002/wnan.1479

  2. Schinkel AH, Wagenaar E, Mol CAAM, van Deemter L (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97(11):2517–2524. https://doi.org/10.1172/Jci118699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359(9311):1011–1018

    Article  CAS  Google Scholar 

  4. Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30(9):907–911

    Article  CAS  Google Scholar 

  5. Selker RG, Shapiro WR, Burger P, Blackwood MS, Arena VC, Gilder JC, Malkin MG, Mealey JJ Jr, Neal JH, Olson J, Robertson JT, Barnett GH, Bloomfield S, Albright R, Hochberg FH, Hiesiger E, Green S (2002) Brain tumor cooperative G. the brain tumor cooperative group NIH trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 51(2):343–355; discussion 55–7

    Article  Google Scholar 

  6. Tsao MN, Mehta MP, Whelan TJ, Morris DE, Hayman JA, Flickinger JC, Mills M, Rogers CL, Souhami L (2005) The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for malignant glioma. Int J Radiat Oncol Biol Phys 63(1):47–55. https://doi.org/10.1016/j.ijrobp.2005.05.024

    Article  PubMed  Google Scholar 

  7. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, MJB T, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, Van Den Weyngaert D, Kaendler S, Krauseneck P, Vinolas N, Villa S, Wurm RE, MHB M, Spagnolli F, Kantor G, Malhaire JP, Renard L, De Witte O, Scandolaro L, Vecht CJ, Maingon P, Lutterbach J, Kobierska A, Bolla M, Souchon R, Mitine C, Tzuk-Shina T, Kuten A, Haferkamp G, de Greve J, Priou F, Menten J, Rutten I, Clavere P, Malmstrom A, Jancar B, Newlands E, Pigott K, Twijnstra A, Chinot O, Reni M, Boiardi A, Fabbro M, Campone M, Bozzino J, Frenay M, Gijtenbeek J, Brandes AA, Delattre JY, Bogdahn U, De Paula U, van den Bent MJ, Hanzen C, Pavanato G, Schraub S, Pfeffer R, Soffietti R, Weller M, Kortmann RD, Taphoorn M, Torrecilla JL, Marosi C, Grisold W, Huget P, Forsyth P, Fulton D, Kirby S, Wong R, Fenton D, Fisher B, Cairncross G, Whitlock P, Belanger K, Burdette-Radoux S, Gertler S, Saunders S, Laing K, Siddiqui J, Martin LA, Gulavita S, Perry J, Mason W, Thiessen B, Pai H, Alam ZY, Eisenstat D, Mingrone W, Hofer S, Pesce G, Curschmann J, Dietrich PY, Stupp R, Mirimanoff RO, Thum P, Baumert B, Ryan G, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 352(10):987–996. https://doi.org/10.1056/Nejmoa043330

    Article  CAS  PubMed  Google Scholar 

  8. McGirt MJ, Than KD, Weingart JD, Chaichana KL, Attenello FJ, Olivi A, Laterra J, Kleinberg LR, Grossman SA, Brem H, Quinones-Hinojosa A (2009) Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J Neurosurg 110(3):583–588. https://doi.org/10.3171/2008.5.17557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H (2008) Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: A 10-year institutional experience. Ann Surg Oncol 15(10):2887–2893. https://doi.org/10.1245/s10434-008-0048-2

    Article  PubMed  Google Scholar 

  10. Chaichana KL, Zaidi H, Pendleton C, McGirt MJ, Grossman R, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H (2011) The efficacy of carmustine wafers for older patients with glioblastoma multiforme: prolonging survival. Neurol Res 33(7):759–764. https://doi.org/10.1179/1743132811Y.0000000006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fleming AB, Saltzman WM (2002) Pharmacokinetics of the carmustine implant. Clin Pharmacokinet 41(6):403–419. https://doi.org/10.2165/00003088-200241060-00002

    Article  CAS  PubMed  Google Scholar 

  12. Greene C, Campbell M (2016) Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers 4(1):e1138017. https://doi.org/10.1080/21688370.2015.1138017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burgess A, Hynynen K (2014) Drug delivery across the blood-brain barrier using focused ultrasound. Expert Opin Drug Deliv 11(5):711–721. https://doi.org/10.1517/17425247.2014.897693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14. https://doi.org/10.1602/neurorx.2.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saito R, Tominaga T (2012) Convection-enhanced delivery: from mechanisms to clinical drug delivery for diseases of the central nervous system. Neurol Med Chir (Tokyo) 52(8):531–538

    Article  Google Scholar 

  16. Hall WA, Rustamzadeh E, Asher AL (2003) Convection-enhanced delivery in clinical trials. Neurosurg Focus 14(2):e2

    Article  Google Scholar 

  17. Sampson JH, Raghavan R, Brady M, Friedman AH, Bigner D (2011) Convection-enhanced delivery. J Neurosurg 115(3):463–464.; ; discussion 5-6. https://doi.org/10.3171/2010.11.JNS101801

    Article  PubMed  Google Scholar 

  18. Mehta AM, Sonabend AM, Bruce JN (2017) Convection-enhanced delivery. Neurotherapeutics 14(2):358–371. https://doi.org/10.1007/s13311-017-0520-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lei Y, Han H, Yuan F, Javeed A, Zhao Y (2017) The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol 157:230–246. https://doi.org/10.1016/j.pneurobio.2015.12.007

    Article  PubMed  Google Scholar 

  20. Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH (1995) Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg 82(6):1021–1029. https://doi.org/10.3171/jns.1995.82.6.1021

    Article  CAS  PubMed  Google Scholar 

  21. Corem-Salkmon E, Ram Z, Daniels D, Perlstein B, Last D, Salomon S, Tamar G, Shneor R, Guez D, Margel S, Mardor Y (2011) Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomedicine 6:1595–1602. https://doi.org/10.2147/IJN.S23025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lonser RR, Sarntinoranont M, Morrison PF, Oldfield EH (2015) Convection-enhanced delivery to the central nervous system. J Neurosurg 122(3):697–706. https://doi.org/10.3171/2014.10.JNS14229

    Article  PubMed  Google Scholar 

  23. Casanova FCP, Sarntinoranont M (2014) Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain. PLoS One 9(4):e94919

    Article  Google Scholar 

  24. Tykocki T, Miekisiak G (2016) Application of convection-enhanced drug delivery in the treatment of malignant gliomas. World Neurosurg 90:172–178. https://doi.org/10.1016/j.wneu.2016.02.040

    Article  PubMed  Google Scholar 

  25. Platt S, Nduom E, Kent M, Freeman C, Machaidze R, Kaluzova M, Wang L, Mao H, Hadjipanayis CG (2012) Canine model of convection-enhanced delivery of cetuximab-conjugated iron-oxide nanoparticles monitored with magnetic resonance imaging. Clin Neurosurg 59:107–113. https://doi.org/10.1227/NEU.0b013e31826989ef

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pollina J, Plunkett RJ, Ciesielski MJ, Lis A, Barone TA, Greenberg SJ, Fenstermaker RA (1998) Intratumoral infusion of topotecan prolongs survival in the nude rat intracranial U87 human glioma model. J Neuro-Oncol 39(3):217–225. https://doi.org/10.1023/A:1005954121521

    Article  CAS  Google Scholar 

  27. Saito R, Bringas JR, Panner A, Tamas M, Pieper RO, Berger MS, Bankiewicz KS (2004) Convection-enhanced delivery of tumor necrosis factor-related apoptosis-inducing ligand with systemic administration of temozolomide prolongs survival in an intracranial glioblastoma xenograft model. Cancer Res 64(19):6858–6862. https://doi.org/10.1158/0008-5472.CAN-04-1683

    Article  CAS  PubMed  Google Scholar 

  28. Raghavan R, Brady ML, Rodriguez-Ponce MI, Hartlep A, Pedain C, Sampson JH (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20(4):E12. https://doi.org/10.3171/foc.2006.20.4.7

    Article  PubMed  Google Scholar 

  29. Laske DW, Youle RJ, Oldfield EH (1997) Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 3(12):1362–1368

    Article  CAS  Google Scholar 

  30. Vogelbaum MA, Brewer C, Barnett GH, Mohammadi AM, Peereboom DM, Ahluwalia MS, Gao S First-in-human evaluation of the Cleveland Multiport Catheter for convection-enhanced delivery of topotecan in recurrent high-grade glioma: results of pilot trial 1. J Neurosurg:1–10. https://doi.org/10.3171/2017.10.jns171845

  31. Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2009) Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27(8):2032–2043. https://doi.org/10.1002/stem.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moreno-Estelles M, Diaz-Moreno M, Gonzalez-Gomez P, Andreu Z, Mira H (2012;Chapter 2:Unit 2D 10) Single and dual birthdating procedures for assessing the response of adult neural stem cells to the infusion of a soluble factor using halogenated thymidine analogs. Curr Protoc Stem Cell Biol. https://doi.org/10.1002/9780470151808.sc02d10s21

  33. Sampson JH, Akabani G, Archer GE, Berger MS, Coleman RE, Friedman AH, Friedman HS, Greer K, Herndon JE 2nd, Kunwar S, McLendon RE, Paolino A, Petry NA, Provenzale JM, Reardon DA, Wong TZ, Zalutsky MR, Pastan I, Bigner DD (2008) Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro-Oncology 10(3):320–329. https://doi.org/10.1215/15228517-2008-012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, Shaffrey M, Ram Z, Piepmeier J, Prados M, Croteau D, Pedain C, Leland P, Husain SR, Joshi BH, Puri RK, Group PS (2010) Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro-Oncology 12(8):871–881. https://doi.org/10.1093/neuonc/nop054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ostertag D, Amundson KK, Lopez Espinoza F, Martin B, Buckley T (2012) Galvao da Silva AP, Lin AH, Valenta DT, Perez OD, Ibanez CE, Chen CI, Pettersson PL, Burnett R, Daublebsky V, Hlavaty J, Gunzburg W, Kasahara N, Gruber HE, jolly DJ, Robbins JM. Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro-Oncology 14(2):145–159. https://doi.org/10.1093/neuonc/nor199

    Article  CAS  PubMed  Google Scholar 

  36. Bruce JN, Fine RL, Canoll P, Yun J, Kennedy BC, Rosenfeld SS, Sands SA, Surapaneni K, Lai R, Yanes CL, Bagiella E, DeLaPaz RL (2011) Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery 69(6):1272–1279.; ; discussion 9-80. https://doi.org/10.1227/NEU.0b013e3182233e24

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V, Poverennova I, Zaaroor M, Jachimczak P, Ludwig S, Schmaus S, Heinrichs H, Schlingensiepen KH (2011) Trabedersen glioma study G. targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology 13(1):132–142. https://doi.org/10.1093/neuonc/noq142

    Article  CAS  PubMed  Google Scholar 

  38. Paxinos G, Franklin KJ (2001) The Mouse Brain in stereotaxic coordinates, 2nd edn. Academic press

    Google Scholar 

  39. Choi JJ, Selert K, Vlachos F, Wong A, Konofagou EE (2011) Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proc Natl Acad Sci U S A 108(40):16539–16544. https://doi.org/10.1073/pnas.1105116108

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marquet F, Tung YS, Teichert T, Ferrera VP, Konofagou EE (2011) Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo. PLoS One 6(7):e22598. https://doi.org/10.1371/journal.pone.0022598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang F, Cheng Y, Mei J, Song Y, Yang YQ, Liu Y, Wang Z (2009) Focused ultrasound microbubble destruction-mediated changes in blood-brain barrier permeability assessed by contrast-enhanced magnetic resonance imaging. J Ultrasound Med 28(11):1501–1509

    Article  Google Scholar 

  42. Hynynen K, Jolesz FA (1998) Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 24(2):275–283

    Article  CAS  Google Scholar 

  43. Su H, Koo JM, Cui H (2015) One-component nanomedicine. J Control Release 219:383–395. https://doi.org/10.1016/j.jconrel.2015.09.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma W, Cheetham AG, Cui H (2016) Building nanostructures with drugs. Nano Today 11(1):13–30. https://doi.org/10.1016/j.nantod.2015.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7(3):255–270. https://doi.org/10.1038/nrd2468

    Article  CAS  PubMed  Google Scholar 

  46. Venkatesh S, Lipper RA (2000) Role of the development scientist in compound lead selection and optimization. J Pharm Sci 89(2):145–154. https://doi.org/10.1002/(SICI)1520-6017(200002)89:2<145::AID-JPS2>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  47. Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, Wang J, Tang J, Fan M, Van Kirk E, Murdoch WJ (2010) Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc 132(12):4259–4265. https://doi.org/10.1021/ja909475m

    Article  CAS  PubMed  Google Scholar 

  48. Lock LL, Li Y, Mao X, Chen H, Staedtke V, Bai R, Ma W, Lin R, Li Y, Liu G, Cui H (2017) One-component supramolecular filament hydrogels as Theranostic label-free magnetic resonance imaging agents. ACS Nano 11(1):797–805. https://doi.org/10.1021/acsnano.6b07196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ryppa C, Mann-Steinberg H, Fichtner I, Weber H, Satchi-Fainaro R, Biniossek ML, Kratz F (2008) In vitro and in vivo evaluation of doxorubicin conjugates with the divalent peptide E-[c(RGDfK)2] that targets integrin alphavbeta3. Bioconjug Chem 19(7):1414–1422. https://doi.org/10.1021/bc800117r

    Article  CAS  PubMed  Google Scholar 

  50. Dal Pozzo A, Ni MH, Esposito E, Dallavalle S, Musso L, Bargiotti A, Pisano C, Vesci L, Bucci F, Castorina M, Fodera R, Giannini G, Aulicino C, Penco S (2010) Novel tumor-targeted RGD peptide-camptothecin conjugates: synthesis and biological evaluation. Bioorg Med Chem 18(1):64–72. https://doi.org/10.1016/j.bmc.2009.11.019

    Article  CAS  PubMed  Google Scholar 

  51. Cheetham AG, Zhang PC, Lin YA, Lock LL, Cui HG (2013) Supramolecular nanostructures formed by anticancer drug assembly. J Am Chem Soc 135(8):2907–2910. https://doi.org/10.1021/Ja3115983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bastiancich C, Danhier P, Preat V, Danhier F (2016) Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release 243:29–42. https://doi.org/10.1016/j.jconrel.2016.09.034

    Article  CAS  PubMed  Google Scholar 

  53. Tyler B, Fowers KD, Li KW, Recinos VR, Caplan JM, Hdeib A, Grossman R, Basaldella L, Bekelis K, Pradilla G, Legnani F, Brem H (2010) A thermal gel depot for local delivery of paclitaxel to treat experimental brain tumors in rats. J Neurosurg 113(2):210–217. https://doi.org/10.3171/2009.11.JNS08162

    Article  CAS  PubMed  Google Scholar 

  54. Li Y, Wang F, Cui H (2016) Peptide-based supramolecular hydrogels for delivery of biologics. Bioeng Transl Med 1(3):306–322. https://doi.org/10.1002/btm2.10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schafer C, Fels C, Brucke M, Holzhausen HJ, Bahn H, Wellman M, Visvikis A, Fischer P, Rainov NG (2001) Gamma-glutamyl transferase expression in higher-grade astrocytic glioma. Acta Oncol 40(4):529–535

    Article  CAS  Google Scholar 

  56. Lin R, Cheetham AG, Zhang PC, Lin YA, Cui HG (2013) Supramolecular filaments containing a fixed 41% paclitaxel loading. Chem Commun 49(43):4968–4970. https://doi.org/10.1039/C3cc41896k

    Article  CAS  Google Scholar 

  57. Zhang PC, Cheetham AG, Lock LL, Cui HG (2013) Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site. Bioconjug Chem 24(4):604–613. https://doi.org/10.1021/bc300585h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang PC, Lock LL, Cheetham AG, Cui HG (2014) Enhanced Cellular Entry and Efficacy of Tat Conjugates by Rational Design of the Auxiliary Segment. Mol Pharm 11(3):964–973. https://doi.org/10.1021/mp400619v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cheetham AG, Zhang P, Lin YA, Lin R, Cui H (2014) Synthesis and self-assembly of a mikto-arm star dual drug amphiphile containing both paclitaxel and camptothecin. J Mater Chem B 2(42):7316–7326. https://doi.org/10.1039/c4tb01084a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin YA, Cheetham AG, Zhang P, Ou YC, Li Y, Liu G, Hermida-Merino D, Hamley IW, Cui H (2014) Multiwalled nanotubes formed by catanionic mixtures of drug amphiphiles. ACS Nano 8(12):12690–12700. https://doi.org/10.1021/nn505688b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82(13):1107–1112

    Article  CAS  Google Scholar 

  62. Sheets KT, Bago JR, Paulk IL, Hingtgen SD (2018) Image-guided resection of glioblastoma and intracranial implantation of therapeutic stem cell-seeded scaffolds. J Vis Exp 137. https://doi.org/10.3791/57452

  63. Hingtgen S, Figueiredo JL, Farrar C, Duebgen M, Martinez-Quintanilla J, Bhere D, Shah K (2013) Real-time multi-modality imaging of glioblastoma tumor resection and recurrence. J Neuro-Oncol 111(2):153–161. https://doi.org/10.1007/s11060-012-1008-z

    Article  Google Scholar 

  64. Okolie O, Bago JR, Schmid RS, Irvin DM, Bash RE, Miller CR, Hingtgen SD (2016) Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model. Neuro-Oncology 18(12):1622–1633. https://doi.org/10.1093/neuonc/now117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kut C, Chaichana KL, Xi J, Raza SM, Ye X, McVeigh ER, Rodriguez FJ, Quinones-Hinojosa A, Li X (2015) Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med 7(292):292ra100. https://doi.org/10.1126/scitranslmed.3010611

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, Liu A, Sankey EW, Tam A, Xu H, Mathios D, Jackson CM, Harris-Bookman S, Garzon-Muvdi T, Sheu M, Martin AM, Tyler BM, Tran PT, Ye X, Olivi A, Taube JM, Burger PC, Drake CG, Brem H, Pardoll DM, Lim M (2017) Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res 23(1):124–136. https://doi.org/10.1158/1078-0432.CCR-15-1535

    Article  CAS  PubMed  Google Scholar 

  67. Bastiancich C, Bianco J, Vanvarenberg K, Ucakar B, Joudiou N, Gallez B, Bastiat G, Lagarce F, Preat V, Danhier F (2017) Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection. J Control Release 264:45–54. https://doi.org/10.1016/j.jconrel.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  68. Arosio D, Casagrande C (2016) Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 97:111–143. https://doi.org/10.1016/j.addr.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  69. Wang K, Zhang X, Liu Y, Liu C, Jiang B, Jiang Y (2014) Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials 35(30):8735–8747. https://doi.org/10.1016/j.biomaterials.2014.06.042

    Article  CAS  PubMed  Google Scholar 

  70. Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD, Mikkelsen T, Rosenfeld S, Sarantopoulos J, Meyers CA, Fielding RM, Elian K, Wang X, Lawrence B, Shing M, Kelsey S, Castaigne JP, Wen PY (2013) Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res 19(6):1567–1576. https://doi.org/10.1158/1078-0432.CCR-12-2481

    Article  CAS  PubMed  Google Scholar 

  71. Kang T, Zhu Q, Jiang D, Feng X, Feng J, Jiang T, Yao J, Jing Y, Song Q, Jiang X, Gao X, Chen J (2016) Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment. Biomaterials 101:60–75. https://doi.org/10.1016/j.biomaterials.2016.05.037

    Article  CAS  PubMed  Google Scholar 

  72. Sun Z, Yan X, Liu Y, Huang L, Kong C, Qu X, Wang M, Gao R, Qin H (2017) Application of dual targeting drug delivery system for the improvement of anti-glioma efficacy of doxorubicin. Oncotarget 8(35):58823–58834. https://doi.org/10.18632/oncotarget.19221

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5(209):209ra152. https://doi.org/10.1126/scitranslmed.3006839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM (2004) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10(11):3667–3677. https://doi.org/10.1158/1078-0432.CCR-03-0740

    Article  CAS  PubMed  Google Scholar 

  75. Karlsson J, Vaughan HJ, Green JJ (2018) Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng. https://doi.org/10.1146/annurev-chembioeng-060817-084055

  76. Clark AJ, Davis ME (2015) Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci U S A 112(40):12486–12491. https://doi.org/10.1073/pnas.1517048112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, He H, Yang VC, Huang Y (2016) Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for Antiglioma therapy. ACS Nano 10(11):9999–10012. https://doi.org/10.1021/acsnano.6b04268

    Article  CAS  PubMed  Google Scholar 

  78. Cai Q, Wang L, Deng G, Liu J, Chen Q, Chen Z (2016) Systemic delivery to central nervous system by engineered PLGA nanoparticles. Am J Transl Res 8(2):749–764

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We will like to thank Nick Ellens, PhD, for optimizing sonication parameters for MRIgFUS. AQH, PS, RA, and MLV are supported by NIH grants CA183827, CA195503, CA216855, and CA200399. MLV is also supported by CONACYT and PECEM from the National Autonomous University of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Schiapparelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schiapparelli, P., Lara-Velazquez, M., Al-kharboosh, R., Su, H., Cui, H., Quinones-Hinojosa, A. (2021). Strategies to Modulate the Blood-Brain Barrier for Directed Brain Tumor Targeting. In: Agrahari, V., Kim, A., Agrahari, V. (eds) Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, vol 163. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1052-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1052-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1051-0

  • Online ISBN: 978-1-0716-1052-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics