Skip to main content

Design and Generation of Self-Assembling Peptide Virus-like Particles with Intrinsic GPCR Inhibitory Activity

  • Protocol
  • First Online:
Polypeptide Materials

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2208))

Abstract

Synthetic analogs of the second transmembrane domain (TM) containing a portion of the extracellular loop 1 of G-protein-coupled receptors (GPCR) can serve as biased antagonists of the corresponding receptor. Analogs with negative charges added to the extracellular end self-assemble into round structures. Addition of polyethylene glycol chains of defined length to the C-terminus of the peptides prevents super aggregation and results in highly uniform particles that can fuse with cell membranes spontaneously. Added PEG chains slow down cell fusion, while attachment of receptor ligands to the surface of particles results in receptor-mediated membrane fusion and cell-selective delivery. Critical assembly concentration of TM peptide particles is in the nanomolar range and thus requires nontraditional methods of determination. In this chapter, we outline sequence selection and design of self-assembling GPCR antagonists, methods of the preparation of the nanoparticles, and biophysical methods of particle characterization. The protocols allow for straightforward rational design, generation, and characterization of self-assembling GPCR antagonists for a variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Henninot A, Collins JC, Nuss JM (2018) The current state of peptide drug discovery: back to the future? J Med Chem 61:1382–1414. https://doi.org/10.1021/acs.jmedchem.7b00318

    Article  CAS  PubMed  Google Scholar 

  2. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052

    Article  CAS  PubMed  Google Scholar 

  3. Rentzsch R, Renard BY (2015) Docking small peptides remains a great challenge: an assessment using AutoDock Vina. Brief Bioinform 16:1045–1056. https://doi.org/10.1093/bib/bbv008

    Article  CAS  PubMed  Google Scholar 

  4. Lensink MF, Velankar S, Wodak SJ (2017) Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 85:359–377. https://doi.org/10.1002/prot.25215

    Article  CAS  PubMed  Google Scholar 

  5. Tarasova NI, Rice WG, Michejda CJ (1999) Inhibition of G-protein-coupled receptor function by disruption of transmembrane domain interactions. J Biol Chem 274:34911–34915

    Article  CAS  Google Scholar 

  6. Tarasov SG, Gaponenko V, Howard OM, Chen Y, Oppenheim JJ, Dyba MA, Subramaniam S, Lee Y, Michejda C, Tarasova NI (2011) Structural plasticity of a transmembrane peptide allows self-assembly into biologically active nanoparticles. Proc Natl Acad Sci U S A 108:9798–9803. https://doi.org/10.1073/pnas.1014598108

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hitchinson B, Eby JM, Gao X, Guite-Vinet F, Ziarek JJ, Abdelkarim H, Lee Y, Okamoto Y, Shikano S, Majetschak M, Heveker N, Volkman BF, Tarasova NI, Gaponenko V (2018) Biased antagonism of CXCR4 avoids antagonist tolerance. Sci Signal 11:eaat2214. https://doi.org/10.1126/scisignal.aat2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Evans AE, Tripathi A, LaPorte HM, Brueggemann LI, Singh AK, Albee LJ, Byron KL, Tarasova NI, Volkman BF, Cho TY, Gaponenko V, Majetschak M (2016) New insights into mechanisms and functions of chemokine (C-X-C motif) receptor 4 heteromerization in vascular smooth muscle. Int J Mol Sci 17:971. https://doi.org/10.3390/ijms17060971

    Article  CAS  PubMed Central  Google Scholar 

  9. Tripathi A, Vana PG, Chavan TS, Brueggemann LI, Byron KL, Tarasova NI, Volkman BF, Gaponenko V, Majetschak M (2015) Heteromerization of chemokine (C-X-C motif) receptor 4 with alpha1A/B-adrenergic receptors controls alpha1-adrenergic receptor function. Proc Natl Acad Sci U S A 112:E1659–E1668. https://doi.org/10.1073/pnas.1417564112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grozdanovic M, Laffey KG, Abdelkarim H, Hitchinson B, Harijith A, Moon HG, Park GY, Rousslang LK, Masterson JC, Furuta GT, Tarasova NI, Gaponenko V, Ackerman SJ (2019) Novel peptide nanoparticle-biased antagonist of CCR3 blocks eosinophil recruitment and airway hyperresponsiveness. J Allergy Clin Immunol 143:669–680 e12. https://doi.org/10.1016/j.jaci.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  11. Lee Y, Chen Y, Tarasova NI, Gaponenko V (2011) The structure of monomeric components of self-assembling CXCR4 antagonists determines the architecture of resulting nanostructures. Nanotechnology 22:505101. https://doi.org/10.1088/0957-4484/22/50/505101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Collins JM, Porter KA, Singh SK, Vanier GS (2014) High-efficiency solid phase peptide synthesis (HE-SPPS). Org Lett 16:940–943. https://doi.org/10.1021/ol4036825

    Article  CAS  PubMed  Google Scholar 

  13. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427. https://doi.org/10.1007/s12551-016-0218-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nieto-Draghi C, Avalos JB, Rousseau B (2003) Transport properties of dimethyl sulfoxide aqueous solutions. J Chem Phys 119:4782–4789

    Article  CAS  Google Scholar 

  15. Viggiano G, Ragozzino E, D'Ambrosio L, Santamaria R (1973) Water-DMSO and water-DMSO-urea systems. Boll Chim Farm 112:746–752

    CAS  PubMed  Google Scholar 

  16. Seidel SA, Dijkman PM, Lea WA, van den Bogaart G, Jerabek-Willemsen M, Lazic A, Joseph JS, Srinivasan P, Baaske P, Simeonov A, Katritch I, Melo FA, Ladbury JE, Schreiber G, Watts A, Braun D, Duhr S (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59:301–315. https://doi.org/10.1016/j.ymeth.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  17. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

Download references

Acknowledgments

This project has been funded in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN26120080001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

We are very grateful to Dr. Htet Khant for sample processing and collecting electron microscopy data and Dr. Natalia DeVal for the computational reconstruction of 3D structures of nanoparticles from EM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadya Tarasova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tarasov, S.G., Dyba, M., Yu, J., Tarasova, N. (2021). Design and Generation of Self-Assembling Peptide Virus-like Particles with Intrinsic GPCR Inhibitory Activity. In: Ryadnov, M. (eds) Polypeptide Materials. Methods in Molecular Biology, vol 2208. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0928-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0928-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0927-9

  • Online ISBN: 978-1-0716-0928-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics