Skip to main content

In Vitro Assembly of Virus-Derived Designer Shells Around Inorganic Nanoparticles

  • Protocol
  • First Online:
Virus-Derived Nanoparticles for Advanced Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1776))

Abstract

Nanoparticle-templated assembly of virus shells provides a promising approach to the production of hybrid nanomaterials and a potential avenue toward new mechanistic insights in virus phenomena originating in many-body effects, which cannot be understood from examining the properties of molecular subunits alone. This approach complements the successful molecular biology perspective traditionally used in virology, and promises a deeper understanding of viruses and virus-like particles through an expanded methodological toolbox. Here we present protocols for forming a virus coat protein shell around functionalized inorganic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rao VR, Upadhyay AK, Kompella UB (2013) pH shift assembly of adenoviral serotype 5 capsid protein nanosystems for enhanced delivery of nanoparticles, proteins and nucleic acids. J Control Release 172(1):341–350

    Article  CAS  PubMed  Google Scholar 

  2. van Kan-Davelaar HE, van Hest JC, Cornelissen JJ, Koay MS (2014) Using viruses as nanomedicines. Br J Pharmacol 171(17):4001–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22:901–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Korkmaz N, Kim YJ, Nam CH (2013) Bacteriophages as templates for manufacturing supramolecular structures. Macromol Biosci 13(3):376–387

    Article  CAS  PubMed  Google Scholar 

  5. Culver JN et al (2015) Plant virus directed fabrication of nanoscale materials and devices. Virology 479–480:200–212

    Article  CAS  PubMed  Google Scholar 

  6. Flenniken ML et al (2009) A library of protein cage architectures as nanomaterials. Curr Top Microbiol Immunol 327:71–93

    PubMed  CAS  Google Scholar 

  7. Prevelige P (1998) Inhibiting virus-capsid assembly by altering the polymerisation pathway. Trends Biotechnol 16(2):61–65

    Article  CAS  PubMed  Google Scholar 

  8. Katen SP et al (2010) Trapping of hepatitis B virus capsid assembly intermediates by phenylpropenamide assembly accelerators. ACS Chem Biol 5:1125–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zlotnick A, Mukhopadhyay S (2011) Virus assembly, allostery and antivirals. Trends Microbiol 19:14–23

    Article  CAS  PubMed  Google Scholar 

  10. Oh D, Qi J, Lu YC, Zhang Y, Shao-Horn Y, Belcher AM (2013) Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries. Nat Commun 4:2756

    Article  CAS  PubMed  Google Scholar 

  11. Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2013) Solar vapor generation enabled by nanoparticles. ACS Nano 7(1):42–49

    Article  CAS  PubMed  Google Scholar 

  12. Glasgow J, Tullman-Ercek D (2014) Production and applications of engineered viral capsids. Appl Microbiol Biotechnol 98(13):5847–5858

    Article  CAS  PubMed  Google Scholar 

  13. Wu M, Wu M, Sherwin T, Brown WL, Stockley PG (2005) Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids. Nanomedicine 1(1):67–76

    Article  CAS  PubMed  Google Scholar 

  14. Steinmetz NF, Lin T, Lomonossoff GP, Johnson JE (2009) Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology. Curr Top Microbiol Immunol 327:23–58

    PubMed  CAS  Google Scholar 

  15. Singh R, Kostarelos K (2009) Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol 27(4):220–229

    Article  CAS  PubMed  Google Scholar 

  16. Franzen S, Lommel SA (2009) Targeting cancer with ‘smart bombs’: equipping plant virus nanoparticles for a ‘seek and destroy’ mission. Nanomedicine (Lond) 4(5):575–588

    Article  CAS  Google Scholar 

  17. Plummer EM, Manchester M (2011) Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(2):174–196

    Article  CAS  PubMed  Google Scholar 

  18. Pokorski JK, Hovlid ML, Finn MG (2011) Cell targeting with hybrid Qβ virus-like particles displaying epidermal growth factor. Chembiochem 12(16):2441–2447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jung B, Anvari B (2013) Virus-mimicking optical nanomaterials: near infrared absorption and fluorescence characteristics and physical stability in biological environments. ACS Appl Mater Interfaces 5(15):7492–7500

    Article  CAS  PubMed  Google Scholar 

  20. Huang X, Stein BD, Cheng H, Malyutin A, Tsvetkova IB, Baxter DV, Remmes NB, Verchot J, Kao C, Bronstein LM, Dragnea B (2011) Magnetic virus-like nanoparticles in N. benthamiana plants: a new paradigm for environmental and agronomic biotechnological research. ACS Nano 5(5):4037–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li F et al (2010) Viral coat proteins as flexible nano-building-blocks for nanoparticle encapsulation. Small 6(20):2301–2308

    Article  CAS  PubMed  Google Scholar 

  22. Li C, Li F, Zhang Y, Zhang W, Zhang XE, Wang Q (2015) Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 9(12):12255–12263

    Article  CAS  PubMed  Google Scholar 

  23. Destito G, Yeh R, Rae CS, Finn MG, Manchester M (2007) Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem Biol 14(10):1152–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liepold LO et al (2005) Structural transitions in Cowpea chlorotic mottle virus (CCMV). Phys Biol 2(4):S166–S172

    Article  CAS  PubMed  Google Scholar 

  25. DuFort CC, Dragnea B (2010) Bio-enabled synthesis of metamaterials. Annu Rev Phys Chem 61:323–344

    Article  CAS  PubMed  Google Scholar 

  26. Tee BC, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7:825–832

    Article  CAS  PubMed  Google Scholar 

  27. Bichler O et al (2012) Pavlov's dog associative learning demonstrated on synaptic-like organic transistors. Neural Comput 25(2):549–566

    Article  PubMed  Google Scholar 

  28. Kelly KL et al (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  29. Boyer D et al (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584):1160–1163

    Article  CAS  PubMed  Google Scholar 

  30. Vieweger M et al (2011) Photothermal imaging and measurement of protein shell stoichiometry of single HIV-1 Gag virus-like nanoparticles. ACS Nano 5(9):7324–7333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ayala-Orozco C et al (2014) Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells. ACS Nano 8(6):6372–6381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44(14):4792–4834

    Article  CAS  PubMed  Google Scholar 

  33. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luckanagul JA et al (2015) Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo. J Biomed Mater Res A 103(3):887–895

    Article  CAS  PubMed  Google Scholar 

  35. Goicochea NL et al (2011) Structure and stoichiometry of template-directed recombinant HIV-1 Gag particles. J Mol Biol 410(4):667–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang X et al (2007) Self-assembled virus-like particles with magnetic cores. Nano Lett 7(8):2407–2416

    Article  CAS  PubMed  Google Scholar 

  37. Sun J et al (2007) Core-controlled polymorphism in virus-like particles. Proc Natl Acad Sci U S A 104(4):1354–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dixit SK et al (2006) Quantum dot encapsulation in viral capsids. Nano Lett 6(9):1993–1999

    Article  CAS  PubMed  Google Scholar 

  39. Dragnea B et al (2003) Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J Am Chem Soc 125(21):6374–6375

    Article  CAS  PubMed  Google Scholar 

  40. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  41. Cardinale D, Carette N, Michon T (2012) Virus scaffolds as enzyme nano-carriers. Trends Biotechnol 30(7):369–376

    Article  CAS  PubMed  Google Scholar 

  42. Loo, L., et al., Infusion of dye molecules into Red clover necrotic mosaic virus. (1359–7345 (Print)).

    Google Scholar 

  43. Loo LN, Guenther RH, Basnayake VR, Lommel SA, Franzen S (2006) Controlled encapsulation of gold nanoparticles by a viral protein shell. J Am Chem Soc 128:4502–4503

    Article  CAS  PubMed  Google Scholar 

  44. Hiebert E, Bancroft JB, Bracker CE (1968) The assembly in vitro of some small spherical viruses, hybrid viruses, and other nucleoproteins. Virology 34:492–508

    Article  CAS  PubMed  Google Scholar 

  45. Cuillel M, Berthet-Colominas C, Timmins PA, Zulauf M (1987) Reassembly of brome mosaic virus from dissociated virus. Eur Biophys J 15(3):169–176

    Article  CAS  Google Scholar 

  46. Lucas RR (2002) The crystallographic structure of brome mosaic virus. J Mol Biol 317(1):95–108

    Article  CAS  PubMed  Google Scholar 

  47. Lane L (1974) The bromoviruses. Adv Virus Res 19:151–220

    Article  CAS  PubMed  Google Scholar 

  48. Vaughan R et al (2014) The tripartite virions of the brome mosaic virus have distinct physical properties that affect the timing of the infection process. J Virol 88:6483–6491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Casjens S (1985) Virus structure and assembly

    Google Scholar 

  50. He L et al (2013) Hepatitis virus capsid polymorph stability depends on encapsulated cargo size. ACS Nano 7:8447–8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Slot JW, Geuze HJ (1985) A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol 38(1):87–93

    PubMed  CAS  Google Scholar 

  52. Muhlpfordt H (1982) The preparation of colloidal gold particles using tannic acid as an additional reducing agent. Exp Dermatol 38:1127–1128

    Google Scholar 

  53. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature (London) Phys Sci 241(105):20–22

    Article  CAS  Google Scholar 

  54. Turkevich J, Stevenson PC, Hillier J (1953) The formation of colloidal gold. J Phys Chem 57:670–673

    Article  CAS  Google Scholar 

  55. Turkevich J, Stevenson PC, Hillier J (1951) The nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  56. Tsvetkova IB, Dragnea BG (2015) Encapsulation of nanoparticles in virus protein shells. Methods Mol Biol 1252:1–15

    Article  CAS  PubMed  Google Scholar 

  57. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem 100(2):468–471

    Article  CAS  Google Scholar 

  58. Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M, Stein BD, Dragnea B (2007) Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem Mater 19:3624–3632

    Article  CAS  Google Scholar 

  59. Gopinath K, Dragnea B, Kao C (2005) Interaction between brome mosaic virus proteins and RNAs: effects on RNA replication, protein expression, and RNA stability. J Virol 79(22):14222–14234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23(6):718–723

    Article  CAS  PubMed  Google Scholar 

  61. Dillen W, De Clercq J, Kapila J, Zambre M, Van Montagu M, Angenon G (1997) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J 12(6):1459–1463

    Article  CAS  Google Scholar 

  62. Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8(4):291–298

    Article  CAS  PubMed  Google Scholar 

  63. Cuillel M, Berthet-Colominas C, Timmins PA, Zulauf M (1987) Reassembly of brome mosaic virus from dissociated virus. Eur Biophys J 15(3):169–176

    Article  CAS  Google Scholar 

  64. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128(1):82–97

    Article  CAS  PubMed  Google Scholar 

  65. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  66. Chen S, Kimura K (1999) Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water. Langmuir 15:1075–1082

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan G. Dragnea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vieweger, S.E., Tsvetkova, I.B., Dragnea, B.G. (2018). In Vitro Assembly of Virus-Derived Designer Shells Around Inorganic Nanoparticles. In: Wege, C., Lomonossoff, G. (eds) Virus-Derived Nanoparticles for Advanced Technologies. Methods in Molecular Biology, vol 1776. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7808-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7808-3_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7806-9

  • Online ISBN: 978-1-4939-7808-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics