Skip to main content

Nanofibers and Nanostructured Scaffolds for Nervous System Lesions

  • Protocol
  • First Online:
Nanomedicines for Brain Drug Delivery

Part of the book series: Neuromethods ((NM,volume 157))

Abstract

Strategies aimed at repairing the injured nervous system have as their main goal the reconnection of axons with their appropriate targets through bridging devices. In order to achieve this, such devices must provide cues to support directed axonal growth and good integration with the host tissue. Differences in the anatomy of the central nervous system (CNS) and the peripheral nervous system (PNS) as well as their specific tissue response after injury, where the protective environment in the CNS contrasts with the more permissive one in the PNS, require strategies to be tailored for these specific locations. This chapter focuses on the development of nanostructured scaffolds (including hydrogels) in the formulation of strategies intended to promote axon regeneration and functional tissue repair following traumatic spinal cord injury (SCI) and peripheral nerve injury (PNI). The reader will be presented with a general introduction to the central nervous system and the peripheral nervous system, the pathophysiological consequences of such injuries, their incidence, and how advances in the state of the art of bioengineering nanostructured scaffolds are contributing to this important aspect of tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Harel NY, Strittmatter SM (2006) Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury? Nat Rev Neurosci 7:603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Geller HM, Fawcett JW (2002) Building a bridge: engineering spinal cord repair. Exp Neurol 174:125–136

    Article  PubMed  Google Scholar 

  3. Azevedo FAC et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  4. Singh A et al (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6:309–331

    PubMed  PubMed Central  Google Scholar 

  5. Bunge RP et al (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59:75–89

    CAS  PubMed  Google Scholar 

  6. Bunge RP, Puckett WR, Hiester ED (1997) Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries. Adv Neurol 72:305–315

    CAS  PubMed  Google Scholar 

  7. Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 76:319–370

    Article  CAS  PubMed  Google Scholar 

  8. Richardson PM et al (2009) Responses of the nerve cell body to axotomy. Neurosurgery 65:A74–A79

    Article  PubMed  Google Scholar 

  9. Bareyre FM et al (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7:269–277

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh A et al (2010) Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat Neurosci 13:97–104

    Article  CAS  PubMed  Google Scholar 

  11. Courtine G et al (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156

    Article  CAS  PubMed  Google Scholar 

  13. Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346

    Article  CAS  PubMed  Google Scholar 

  14. McKerracher L, Rosen KM (2015) MAG, myelin and overcoming growth inhibition in the CNS. Front Mol Neurosci 8:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li S, Strittmatter SM (2003) Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci 23:4219–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Starkey ML, Schwab ME (2012) Anti-Nogo-A and training: can one plus one equal three? Exp Neurol 235:53–61

    Article  CAS  PubMed  Google Scholar 

  17. Hackett AR, Lee JK (2016) Understanding the NG2 glial scar after spinal cord injury. Front Neurol 7:199

    Article  PubMed  PubMed Central  Google Scholar 

  18. Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    Article  CAS  PubMed  Google Scholar 

  19. Brook GA et al (1999) Astrocytes re-express nestin in deafferented target territories of the adult rat hippocampus. Neuroreport 10:1007–1011

    Article  CAS  PubMed  Google Scholar 

  20. Snow DM, Steindler DA, Silver J (1990) Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev Biol 138:359–376

    Article  CAS  PubMed  Google Scholar 

  21. Dou CL, Levine JM (1994) Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J Neurosci 14:7616–7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morgenstern DA, Asher RA, Fawcett JW (2002) Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res 137:313–332

    Article  CAS  PubMed  Google Scholar 

  23. Galtrey CM, Fawcett JW (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res Rev 54:1–18

    Article  CAS  PubMed  Google Scholar 

  24. Faulkner JR et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okada S et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    Article  CAS  PubMed  Google Scholar 

  26. Bradbury EJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  CAS  PubMed  Google Scholar 

  27. Massey JM et al (2006) Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. J Neurosci 26:4406–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pasterkamp RJ et al (1999) Expression of the gene encoding the chemorepellent semaphorin III is induced in the fibroblast component of neural scar tissue formed following injuries of adult but not neonatal CNS. Mol Cell Neurosci 13:143–166

    Article  CAS  PubMed  Google Scholar 

  29. Niclou SP et al (2003) Meningeal cell-derived semaphorin 3A inhibits neurite outgrowth. Mol Cell Neurosci 24:902–912

    Article  CAS  PubMed  Google Scholar 

  30. Göritz C et al (2011) A pericyte origin of spinal cord scar tissue. Science 333:238–242

    Article  PubMed  CAS  Google Scholar 

  31. Soderblom C et al (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33:13882–13887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barnabé-Heider F et al (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482

    Article  PubMed  CAS  Google Scholar 

  33. Ren Y et al (2017) Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci Rep 7:41122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rolls A et al (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5:e171

    Article  PubMed  PubMed Central  Google Scholar 

  35. Beck KD et al (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133:433–447

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kigerl KA, McGaughy VM, Popovich PG (2006) Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury. J Comp Neurol 494:578–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rapalino O et al (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    Article  CAS  PubMed  Google Scholar 

  38. Kwon MJ, Yoon HJ, Kim BG (2016) Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration. Neural Regen Res 11:1368–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deumens R et al (2010) Repairing injured peripheral nerves: bridging the gap. Prog Neurobiol 92:245–276

    Article  PubMed  Google Scholar 

  40. Noble J et al (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45:116–122

    Article  CAS  PubMed  Google Scholar 

  41. Robinson LR (2000) Traumatic injury to peripheral nerves. Muscle Nerve 23:863–873

    Article  CAS  PubMed  Google Scholar 

  42. Lee SK, Wolfe SW (2000) Peripheral nerve injury and repair. J Am Acad Orthop Surg 8:243–252

    Article  CAS  PubMed  Google Scholar 

  43. Pabari A et al (2010) Modern surgical management of peripheral nerve gap. J Plast Reconstr Aesthet Surg 63:1941–1948

    Article  PubMed  Google Scholar 

  44. Goldberg JL, Barres BA (2000) The relationship between neuronal survival and regeneration. Annu Rev Neurosci 23:579–612

    Article  CAS  PubMed  Google Scholar 

  45. Novikov L, Novikova L, Kellerth JO (1997) Brain-derived neurotrophic factor promotes axonal regeneration and long-term survival of adult rat spinal motoneurons in vivo. Neuroscience 79:765–774

    Article  CAS  PubMed  Google Scholar 

  46. Makwana M, Raivich G (2005) Molecular mechanisms in successful peripheral regeneration. FEBS J 272:2628–2638

    Article  CAS  PubMed  Google Scholar 

  47. Shin JE, Cho Y (2017) Epigenetic regulation of axon regeneration after neural injury. Mol Cells 40:10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yudin D et al (2008) Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron 59:241–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmitt AB et al (2003) Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat. BMC Neurosci 4:8

    Article  PubMed  PubMed Central  Google Scholar 

  50. Saxena S, Caroni P (2007) Mechanisms of axon degeneration: from development to disease. Prog Neurobiol 83:174–191

    Article  CAS  PubMed  Google Scholar 

  51. Perry VH, Brown MC, Gordon S (1987) The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 165:1218–1223

    Article  CAS  PubMed  Google Scholar 

  52. Karanth S et al (2006) Nature of signals that initiate the immune response during Wallerian degeneration of peripheral nerves. Exp Neurol 202:161–166

    Article  CAS  PubMed  Google Scholar 

  53. Boivin A et al (2007) Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J Neurosci 27:12565–12576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brosius LA, Barres BA (2014) Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell 28:7–17

    Article  CAS  Google Scholar 

  55. Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179

    Article  CAS  PubMed  Google Scholar 

  56. Stratton JA, Shah PT (2016). Macrophage polarization in nerve injury: do Schwann cells play a role? Neural Regen Res 11(1): 53–57

    Google Scholar 

  57. Sulaiman W, Gordon T (2013) Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 13:100–108

    PubMed  PubMed Central  Google Scholar 

  58. Ide C (1983) Nerve regeneration and Schwann cell basal lamina: observations of the long-term regeneration. Arch Histol Jpn 46:243–257

    Article  CAS  PubMed  Google Scholar 

  59. Son YJ, Thompson WJ (1995) Schwann cell processes guide regeneration of peripheral axons. Neuron 14:125–132

    Article  CAS  PubMed  Google Scholar 

  60. Thompson DM, Buettner HM (2006) Neurite outgrowth is directed by Schwann cell alignment in the absence of other guidance cues. Ann Biomed Eng 34:161–168

    Article  PubMed  Google Scholar 

  61. Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110

    Article  PubMed  PubMed Central  Google Scholar 

  62. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  63. Venugopal J et al (2008) Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des 14:2184–2200

    Article  CAS  PubMed  Google Scholar 

  64. Li W-J et al (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  CAS  PubMed  Google Scholar 

  65. Chew SY et al (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12:4751–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hutmacher D et al (2008) Scaffold design and fabrication. In: van Blitterswijk C et al (eds) Tissue engineering. Elsevier, Amsterdam, pp 403–454

    Chapter  Google Scholar 

  67. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  CAS  PubMed  Google Scholar 

  68. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer (Guildf) 49:2387–2425

    Article  CAS  Google Scholar 

  69. Sun B et al (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39:862–890

    Article  CAS  Google Scholar 

  70. Hutmacher DW, Dalton PD (2011) Melt electrospinning. Chem Asian J 6:44–56

    Article  CAS  PubMed  Google Scholar 

  71. Brown TD, Dalton PD, Hutmacher DW (2016) Melt electrospinning today: an opportune time for an emerging polymer process. Prog Polym Sci 56:116–166

    Article  CAS  Google Scholar 

  72. Li F, Zhao Y, Song Y (2010) Core-shell nanofibers: nano channel and capsule by coaxial electrospinning. In: Kumar A (ed) Nanofibers. InTech, London

    Google Scholar 

  73. K.S. Athira, Pallab S. & Chatterjee K. (2014) Fabrication of poly(caprolactone) nanofibers by electrospinning. J Polym Biopolym Phys Chem 2, 62–66

    Google Scholar 

  74. Sahay R, Thavasi V, Ramakrishna S (2011) Design modifications in electrospinning setup for advanced applications. J Nanomater 2011: 317673

    Google Scholar 

  75. Dalton P.D., Klee D. & Möller M. (2005) Electrospinning with dual collection rings. Polymer (Guildf) 46, 611–614

    Google Scholar 

  76. Hodde D. et al. (2016) Characterisation of cell-substrate interactions between Schwann cells and three-dimensional fibrin hydrogels containing orientated nanofibre topographical cues. Eur J Neurosci 43, 376–87

    Google Scholar 

  77. Brown T.D. et al. (2014) Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Mater Sci Eng C Mater Biol Appl 45, 698–708

    Google Scholar 

  78. Hochleitner G. et al. (2016) Fibre pulsing during melt electrospinning writing. BioNanoMat 173–4159–171

    Google Scholar 

  79. Ekaputra A.K. et al. (2008) Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9, 2097–103

    Google Scholar 

  80. Neal RA et al (2009) Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng Part C Methods 15:11–21

    Article  CAS  PubMed  Google Scholar 

  81. Xu C et al (2004) In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res A 71:154–161

    Article  PubMed  CAS  Google Scholar 

  82. Min B et al (2004) Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydr Polym 57:285–292

    Article  CAS  Google Scholar 

  83. Lee S-H, Yoon J-W, Suh MH (2002) Continuous nanofibers manufactured by electrospinning technique. Macromol Res 10:282–285

    Article  CAS  Google Scholar 

  84. Lee CH et al (2005) Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26:1261–1270

    Article  CAS  PubMed  Google Scholar 

  85. Mathew G et al (2006) Preparation and anisotropic mechanical behavior of highly-oriented electrospun poly(butylene terephthalate) fibers. J Appl Polym Sci 101:2017–2021

    Article  CAS  Google Scholar 

  86. Sun Z et al (2012) The effect of solvent dielectric properties on the collection of oriented electrospun fibers. J Appl Polym Sci 125:2585–2594

    Article  CAS  Google Scholar 

  87. Góra A et al (2011) Melt-electrospun fibers for advances in biomedical engineering, clean energy, filtration, and separation. Polym Rev 51:265–287

    Article  CAS  Google Scholar 

  88. Arras MML et al (2012) Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci Technol Adv Mater 13:35008

    Article  CAS  Google Scholar 

  89. Carnell LS et al (2008) Aligned mats from electrospun single fibers. Macromolecules 41:5345–5349

    Article  CAS  Google Scholar 

  90. Wang HB et al (2009) Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J Neural Eng 6:16001

    Article  Google Scholar 

  91. Kang YK et al (2008) Development of thermoplastic polyurethane vascular prostheses. J Appl Polym Sci 110:3267–3274

    Article  CAS  Google Scholar 

  92. Brown TD et al (2012) Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode. Biointerphases 7:13

    Article  CAS  PubMed  Google Scholar 

  93. Jungst T et al (2015) Melt electrospinning onto cylinders: effects of rotational velocity and collector diameter on morphology of tubular structures. Polym Int 64:1086–1095

    Article  CAS  Google Scholar 

  94. Dalton PD et al (2007) Electrospinning of polymer melts: phenomenological observations. Polymer (Guildf) 48:6823–6833

    Article  CAS  Google Scholar 

  95. Schnell E. et al. (2007) Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 28, 3012–25

    Google Scholar 

  96. Klinkhammer K et al (2009) Deposition of electrospun fibers on reactive substrates for in vitro investigations. Tissue Eng Part C Methods 15:77–85

    Article  CAS  PubMed  Google Scholar 

  97. Gerardo-Nava J et al (2009) Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine (Lond) 4:11–30

    Article  CAS  Google Scholar 

  98. Sun D et al (2006) Near-field electrospinning. Nano Lett 6:839–842

    Article  CAS  PubMed  Google Scholar 

  99. Chang C, Limkrailassiri K, Lin L (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl Phys Lett 93:123111

    Article  CAS  Google Scholar 

  100. Flynn L., Dalton P.D. & Shoichet M.S. (2003) Fiber templating of poly(2- hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 24, 4265–72

    Google Scholar 

  101. Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839–5846

    Article  CAS  PubMed  Google Scholar 

  102. King VR et al (2003) Mats made from fibronectin support oriented growth of axons in the damaged spinal cord of the adult rat. Exp Neurol 182:383–398

    Article  CAS  PubMed  Google Scholar 

  103. Prang P et al (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569

    CAS  PubMed  Google Scholar 

  104. Yoshii S et al (2004) Restoration of function after spinal cord transection using a collagen bridge. J Biomed Mater Res 70A:569–575

    Article  CAS  Google Scholar 

  105. Stokols S, Tuszynski MH (2006) Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27:443–451

    Article  CAS  PubMed  Google Scholar 

  106. Lee S et al (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 9:917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dalton PD, Shoichet MS (2001) Creating porous tubes by centrifugal forces for soft tissue application. Biomaterials 22:2661–2669

    Article  CAS  Google Scholar 

  108. Tsai EC et al (2004) Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma 21:789–804

    Article  PubMed  Google Scholar 

  109. Tsai EC et al (2006) Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 27:519–533

    Article  CAS  PubMed  Google Scholar 

  110. Nomura H et al (2008) Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury. Neurosurgery 63:127–143

    Article  PubMed  Google Scholar 

  111. Dalton P et al (2008) Tissue engineering of the nervous system. In: van Blitterswijk C et al (eds) Tissue engineering. Elsevier, Amsterdam, pp 611–647

    Chapter  Google Scholar 

  112. Bamber NI et al (2001) Neurotrophins BDNF and NT-3 promote axonal re-entry into the distal host spinal cord through Schwann cell-seeded mini-channels. Eur J Neurosci 13:257–268

    CAS  PubMed  Google Scholar 

  113. Cai P et al (2009) Survival of transplanted neurotrophin-3 expressing human neural stem cells and motor function in a rat model of spinal cord injury. Neural Regen Res 4:485–491

    CAS  Google Scholar 

  114. Nguyen LH et al (2017) Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci Rep 7:42212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Milbreta U et al (2016) Three-dimensional nanofiber hybrid scaffold directs and enhances axonal regeneration after spinal cord injury. ACS Biomater Sci Eng 2:1319–1329

    Article  CAS  PubMed  Google Scholar 

  116. Hurtado A et al (2011) Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials 32:6068–6079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu T et al (2012) Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng Part A 18:1057–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li HY et al (2013) Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model. J Mater Sci Mater Med 24:2001–2011

    Article  CAS  PubMed  Google Scholar 

  119. Pakulska MM, Ballios BG, Shoichet MS (2012) Injectable hydrogels for central nervous system therapy. Biomed Mater 7:24101

    Article  CAS  Google Scholar 

  120. Macaya D, Spector M (2012) Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 7:12001

    Article  CAS  Google Scholar 

  121. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  PubMed  Google Scholar 

  122. Peppas NA et al (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360

    Article  CAS  Google Scholar 

  123. Taylor DL, In Het Panhuis M (2016) Self-healing hydrogels. Adv Mater 28:9060–9093

    Article  CAS  PubMed  Google Scholar 

  124. Jimenez Hamann MC, Tator CH, Shoichet MS (2005) Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Exp Neurol 194:106–119

    Article  CAS  PubMed  Google Scholar 

  125. Sayer FT, Oudega M, Hagg T (2002) Neurotrophins reduce degeneration of injured ascending sensory and corticospinal motor axons in adult rat spinal cord. Exp Neurol 175:282–296

    Article  CAS  PubMed  Google Scholar 

  126. Katz JS, Burdick JA (2009) Hydrogel mediated delivery of trophic factors for neural repair. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:128–139

    Article  CAS  PubMed  Google Scholar 

  127. Ramer MS, Priestley J, V & McMahon S.B. (2000) Functional regeneration of sensory axons into the adult spinal cord. Nature 403:312–316

    Article  CAS  PubMed  Google Scholar 

  128. Hyatt AJT et al (2010) Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord. J Control Release 147:24–29

    Article  CAS  PubMed  Google Scholar 

  129. Ruoslahti E, Yamaguchi Y (1991) Proteoglycans as modulators of growth factor activities. Cell 64:867–869

    Article  CAS  PubMed  Google Scholar 

  130. Sakiyama-Elbert SE, Hubbell JA (2000) Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release 69:149–158

    Article  CAS  PubMed  Google Scholar 

  131. Freudenberg U et al (2009) A star-PEG-heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30:5049–5060

    Article  CAS  PubMed  Google Scholar 

  132. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  CAS  PubMed  Google Scholar 

  133. Baumann MD et al (2010) Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials 31:7631–7639

    Article  CAS  PubMed  Google Scholar 

  134. Elliott DI, Tator CH, Shoichet MS (2015) Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater Sci 3:65–72

    Article  Google Scholar 

  135. Elliott DI, Tator CH, Shoichet MS (2016) Local delivery of neurotrophin-3 and anti-NogoA promotes repair after spinal cord injury. Tissue Eng Part A 22:733–741

    Article  CAS  Google Scholar 

  136. Führmann T et al (2015) Click-crosslinked injectable hyaluronic acid hydrogel is safe and biocompatible in the intrathecal space for ultimate use in regenerative strategies of the injured spinal cord. Methods 84:60–69

    Article  PubMed  CAS  Google Scholar 

  137. Pakulska MM et al (2015) Hybrid crosslinked methylcellulose hydrogel: a predictable and tunable platform for local drug delivery. Adv Mater 27:5002–5008

    Article  CAS  PubMed  Google Scholar 

  138. Ansorena E et al (2013) Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Int J Pharm 455:148–158

    Article  CAS  PubMed  Google Scholar 

  139. Jain A et al (2006) In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27:497–504

    Article  CAS  PubMed  Google Scholar 

  140. De Laporte L et al (2010) Patterned transgene expression in multiple-channel bridges after spinal cord injury. Acta Biomater 6:2889–2897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Walthers CM, Seidlits SK (2015) Gene delivery strategies to promote spinal cord repair. Biomark Insights 10:11–29

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Naidoo J, Young D (2012) Gene regulation systems for gene therapy applications in the central nervous system. Neurol Res Int 2012:595410

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lentz TB, Gray SJ, Samulski RJ (2012) Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 48:179–188

    Article  CAS  PubMed  Google Scholar 

  144. Yin H et al (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555

    Article  CAS  PubMed  Google Scholar 

  145. Yao L et al (2012) Non-viral gene therapy for spinal cord regeneration. Drug Discov Today 17:998–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gersbach CA, Perez-Pinera P (2014) Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine. Expert Opin Ther Targets 18:835–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. De Laporte L, Shea LD (2007) Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev 59:292–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Doukas J et al (2001) Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors. Hum Gene Ther 12:783–798

    Article  CAS  PubMed  Google Scholar 

  149. Kidd ME, Shin S, Shea LD (2012) Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. J Control Release 157:80–85

    Article  CAS  PubMed  Google Scholar 

  150. Wu H-F et al (2013) The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127. Biomaterials 34:1686–1700

    Article  CAS  PubMed  Google Scholar 

  151. Rodriguez AL et al (2016) Tailoring minimalist self-assembling peptides for localized viral vector gene delivery. Nano Res 9:674–684

    Article  CAS  Google Scholar 

  152. Thomas AM et al (2014) Heparin-chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors. Biomaterials 35:8687–8693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lei P, Padmashali RM, Andreadis ST (2009) Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels. Biomaterials 30:3790–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wieland JA, Houchin-Ray TL, Shea LD (2007) Non-viral vector delivery from PEG-hyaluronic acid hydrogels. J Control Release 120:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Shepard JA et al (2011) Gene therapy vectors with enhanced transfection based on hydrogels modified with affinity peptides. Biomaterials 32:5092–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang L-H et al (2011) Anti-DNA antibody modified coronary stent for plasmid gene delivery: results obtained from a porcine coronary stent model. J Gene Med 13:37–45

    Article  CAS  PubMed  Google Scholar 

  157. Segura T et al (2005) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26:359–371

    Article  CAS  PubMed  Google Scholar 

  158. Padmashali RM, Andreadis ST (2011) Engineering fibrinogen-binding VSV-G envelope for spatially- and cell-controlled lentivirus delivery through fibrin hydrogels. Biomaterials 32:3330–3339

    Article  CAS  PubMed  Google Scholar 

  159. Cummings BJ et al (2005) Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci U S A 102:14069–14074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Satti HS et al (2016) Autologous mesenchymal stromal cell transplantation for spinal cord injury: a phase I pilot study. Cytotherapy 18:518–522

    Article  PubMed  Google Scholar 

  161. Jarocha D et al (2015) Continuous improvement after multiple mesenchymal stem cell transplantations in a patient with complete spinal cord injury. Cell Transplant 24:661–672

    Article  PubMed  Google Scholar 

  162. Dasari VR, Veeravalli KK, Dinh DH (2014) Mesenchymal stem cells in the treatment of spinal cord injuries: a review. World J Stem Cells 6:120–133

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kakabadze Z et al (2016) Phase 1 trial of autologous bone marrow stem cell transplantation in patients with spinal cord injury. Stem Cells Int 2016:6768274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Falkner S et al (2016) Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 539:248–253

    Article  PubMed  CAS  Google Scholar 

  165. Arboleda D et al (2011) Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 31:1113–1122

    Article  CAS  PubMed  Google Scholar 

  166. Herberts CA, Kwa MSG, Hermsen HPH (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  167. Marquardt LM, Heilshorn SC (2016) Design of injectable materials to improve stem cell transplantation. Curr Stem Cell Rep 2:207–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Roberts T, De Boni U, Sefton MV (1996) Dopamine secretion by PC12 cells microencapsulated in a hydroxyethyl methacrylate—methyl methacrylate copolymer. Biomaterials 17:267–275

    Article  CAS  PubMed  Google Scholar 

  169. Sontag CJ et al (2014) Injury to the spinal cord niche alters the engraftment dynamics of human neural stem cells. Stem cell Rep 2:620–632

    Article  Google Scholar 

  170. Elliott DI et al (2014) Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J Control Release 190:219–227

    Article  CAS  Google Scholar 

  171. Wong Po Foo CTS et al (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci U S A 106:22067–22072

    Article  PubMed  PubMed Central  Google Scholar 

  172. Führmann T et al (2016) Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials 83:23–36

    Article  PubMed  CAS  Google Scholar 

  173. Li X et al (2013) Engineering an in situ crosslinkable hydrogel for enhanced remyelination. FASEB J 27:1127–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Madl CM, Katz LM, Heilshorn SC (2016) Bio-orthogonally crosslinked, engineered protein hydrogels with tunable mechanics and biochemistry for cell encapsulation. Adv Funct Mater 26:3612–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Aguado BA et al (2012) Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A 18:806–815

    Article  CAS  PubMed  Google Scholar 

  176. Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30:6867–6878

    Article  CAS  PubMed  Google Scholar 

  177. Cai L, Dewi RE, Heilshorn SC (2015) Injectable hydrogels with in situ double network formation enhance retention of transplanted stem cells. Adv Funct Mater 25:1344–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Willerth SM, Sakiyama-Elbert SE (2008) Cell therapy for spinal cord regeneration. Adv Drug Deliv Rev 60:263–276

    Article  CAS  PubMed  Google Scholar 

  179. Johnson PJ et al (2010) Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter 6:5127–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mothe AJ et al (2013) Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials 34:3775–3783

    Article  CAS  PubMed  Google Scholar 

  181. Wu-Fienberg Y et al (2014) Viral transduction of primary Schwann cells using a Cre-lox system to regulate GDNF expression. Biotechnol Bioeng 111:1886–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Condic ML, Lemons ML (2002) Extracellular matrix in spinal cord regeneration: getting beyond attraction and inhibition. Neuroreport 13:A37–A48

    Article  CAS  PubMed  Google Scholar 

  183. Volpato FZ et al (2013) Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials 34:4945–4955

    Article  CAS  PubMed  Google Scholar 

  184. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  PubMed  Google Scholar 

  185. Medberry CJ et al (2013) Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34:1033–1040

    Article  CAS  PubMed  Google Scholar 

  186. Tukmachev D et al (2016) Injectable extracellular matrix hydrogels as scaffolds for spinal cord injury repair. Tissue Eng Part A 22:306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Keane TJ et al (2012) Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 33:1771–1781

    Article  CAS  PubMed  Google Scholar 

  189. Joosten EA, Bär PR, Gispen WH (1995) Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat. J Neurosci Res 41:481–490

    Article  CAS  PubMed  Google Scholar 

  190. Ryan EA et al (1999) Structural origins of fibrin clot rheology. Biophys J 77:2813–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schense JC et al (2000) Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol 18:415–419

    Article  CAS  PubMed  Google Scholar 

  192. Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27:2370–2379

    Article  CAS  PubMed  Google Scholar 

  193. Austin JW et al (2012) The effects of intrathecal injection of a hyaluronan-based hydrogel on inflammation, scarring and neurobehavioural outcomes in a rat model of severe spinal cord injury associated with arachnoiditis. Biomaterials 33:4555–4564

    Article  CAS  PubMed  Google Scholar 

  194. McKay CA et al (2014) An injectable, calcium responsive composite hydrogel for the treatment of acute spinal cord injury. ACS Appl Mater Interfaces 6:1424–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tseng T-C et al (2015) An injectable, self-healing hydrogel to repair the central nervous system. Adv Mater 27:3518–3524

    Article  CAS  PubMed  Google Scholar 

  196. Broguiere N, Isenmann L, Zenobi-Wong M (2016) Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks. Biomaterials 99:47–55

    Article  CAS  PubMed  Google Scholar 

  197. Moisse K, Strong MJ (2006) Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:1083–1093

    Article  CAS  PubMed  Google Scholar 

  198. Koser DE et al (2016) Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci 19:1592–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Jones CAR et al (2014) The spatial-temporal characteristics of type I collagen-based extracellular matrix. Soft Matter 10:8855–8863

    Article  CAS  PubMed  Google Scholar 

  200. Jones CAR et al (2015) Micromechanics of cellularized biopolymer networks. Proc Natl Acad Sci U S A 112:E5117–E5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Zhang S et al (2010) A self-assembly pathway to aligned monodomain gels. Nat Mater 9:594–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tysseling-Mattiace VM et al (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sur S et al (2013) Tuning supramolecular mechanics to guide neuron development. Biomaterials 34:4749–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li A et al (2014) A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials 35:8780–8790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Berns EJ et al (2014) Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 35:185–195

    Article  CAS  PubMed  Google Scholar 

  206. Berns EJ et al (2016) A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells. Acta Biomater 37:50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jiao Y et al (2014) BDNF increases survival and neuronal differentiation of human neural precursor cells cotransplanted with a nanofiber gel to the auditory nerve in a rat model of neuronal damage. Biomed Res Int 2014:356415

    Article  PubMed  PubMed Central  Google Scholar 

  208. Dubey N, Letourneau PC, Tranquillo RT (2001) Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties. Biomaterials 22:1065–1075

    Article  CAS  PubMed  Google Scholar 

  209. Kriebel A et al (2014) Three-dimensional configuration of orientated fibers as guidance structures for cell migration and axonal growth. J Biomed Mater Res B Appl Biomater 102:356–365

    Article  PubMed  CAS  Google Scholar 

  210. Han Q et al (2009) Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Eng Part A 15:2927–2935

    Article  CAS  PubMed  Google Scholar 

  211. Antman-Passig M, Shefi O (2016) Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett 16:2567–2573

    Article  CAS  PubMed  Google Scholar 

  212. Kim J, Staunton JR, Tanner K (2016) Independent control of topography for 3D patterning of the ECM microenvironment. Adv Mater 28:132–137

    Article  CAS  PubMed  Google Scholar 

  213. Pisanic TR et al (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28:2572–2581

    Article  CAS  PubMed  Google Scholar 

  214. Abdolrahman Omidinia-Anarkoli, Sarah Boesveld, Urandelger Tuvshindorj, Jonas C. Rose, Tamás Haraszti, Laura De Laporte, (2017) An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells. Small 13 (36):1702207

    Google Scholar 

  215. Jonas C. Rose, David B. Gehlen, Tamás Haraszti, Jens Köhler, Christopher J. Licht, Laura De Laporte, (2018) Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices. Biomaterials 163:128–141

    Google Scholar 

  216. Christopher Licht, Jonas C. Rose, Abdolrahman Omidinia Anarkoli, Delphine Blondel, Marta Roccio, Tamás Haraszti, David B. Gehlen, Jeffrey A. Hubbell, Matthias P. Lutolf, Laura De Laporte, (2019) Synthetic 3D PEG-anisogel tailored with fibronectin fragments induce aligned nerve extension. Biomacromolecules 20 (11):4075–4087

    Google Scholar 

  217. Jonas C. Rose, Maaike Fölster, Lukas Kivilip, Jose L. Gerardo-Nava, Esther E. Jaekel, David B. Gehlen, Wilko Rohlfs, Laura De Laporte, (2020) Predicting the orientation of magnetic microgel rods for soft anisotropic biomimetic hydrogels. Polym Chem 11 (2):496–507

    Google Scholar 

  218. Rose JC et al (2017) Nerve cells decide to orient inside an injectable hydrogel with minimal structural guidance. Nano Lett 17:3782. https://doi.org/10.1021/acs.nanolett.7b01123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Konofaos P, Ver Halen JP (2013) Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg 29:149–164

    Article  CAS  PubMed  Google Scholar 

  220. Kehoe S., Zhang X.F. & Boyd D. (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43, 553–72

    Google Scholar 

  221. Lackington W.A., Ryan A.J. ∓ O’Brien F.J. (2017) Advances in nerve guidance conduit-based therapeutics for peripheral nerve repair. ACS Biomater Sci Eng doi:10.1021/acsbiomaterials.6b00500, 3, 1221

    Google Scholar 

  222. Zuo J, Hernandez YJ, Muir D (1998) Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury. J Neurobiol 34:41–54

    Article  CAS  PubMed  Google Scholar 

  223. Brooks DN et al (2012) Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 32:1–14

    Article  PubMed  Google Scholar 

  224. Zuniga JR (2015) Sensory outcomes after reconstruction of lingual and inferior alveolar nerve discontinuities using processed nerve allograft--a case series. J Oral Maxillofac Surg 73:734–744

    Article  PubMed  Google Scholar 

  225. Salomon D, Miloro M, Kolokythas A (2016) Outcomes of immediate allograft reconstruction of long-span defects of the inferior alveolar nerve. J Oral Maxillofac Surg 74:2507–2514

    Article  PubMed  Google Scholar 

  226. Tian L, Prabhakaran MP, Ramakrishna S (2015) Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen Biomater 2:31–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Lv Y et al (2015) In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells-derived neural crest stem cells. Biotechnol Lett 37:2497–2506

    Article  CAS  PubMed  Google Scholar 

  228. Xie J et al (2014) Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces 6:9472–9480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Jiang X et al (2014) Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. J Tissue Eng Regen Med 8:377–385

    Article  CAS  PubMed  Google Scholar 

  230. Corey JM et al (2007) Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res A 83:636–645

    Article  PubMed  CAS  Google Scholar 

  231. Kim Y-T et al (2008) The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29:3117–3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Clements IP et al (2009) Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 30:3834–3846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ngo T-TB et al (2003) Poly(L-lactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. J Neurosci Res 72:227–238

    Article  CAS  PubMed  Google Scholar 

  234. Ichihara S, Inada Y, Nakamura T (2008) Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts. Injury 39(Suppl 4):29–39

    Article  PubMed  Google Scholar 

  235. Wang W et al (2009) Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A 91:994–1005

    Article  PubMed  CAS  Google Scholar 

  236. Mottaghitalab F et al (2013) A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS One 8:e74417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Sell SA et al (2010) The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers (Basel) 2:522–553

    Article  CAS  Google Scholar 

  238. Koh HS et al (2008) Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29:3574–3582

    Article  CAS  PubMed  Google Scholar 

  239. Kriebel A et al (2017) Cell-free artificial implants of electrospun fibres in a three-dimensional gelatin matrix support sciatic nerve regeneration in vivo. J Tissue Eng Regen Med 11:3289. https://doi.org/10.1002/term.2237

    Article  CAS  PubMed  Google Scholar 

  240. Koh HS et al (2010) In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng 7:46003

    Article  CAS  Google Scholar 

  241. Wang C-Y et al (2012) The effect of aligned core-shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration. J Biomater Sci Polym Ed 23:167–184

    Article  CAS  PubMed  Google Scholar 

  242. Dimos JT et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  CAS  PubMed  Google Scholar 

  243. Kabiri M et al (2015) Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats. J Biomed Sci 22:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Beigi M-H et al (2014) In vivo integration of poly(ε-caprolactone)/gelatin nanofibrous nerve guide seeded with teeth derived stem cells for peripheral nerve regeneration. J Biomed Mater Res A 102:4554–4567

    PubMed  Google Scholar 

  245. Wang Y-Y et al (2010) Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomed Mater 5:54112

    Article  Google Scholar 

  246. Yun D et al (2014) Biomimetic poly(serinol hexamethylene urea) for promotion of neurite outgrowth and guidance. J Biomater Sci Polym Ed 25:354–369

    Article  CAS  PubMed  Google Scholar 

  247. Jenkins PM et al (2015) A nerve guidance conduit with topographical and biochemical cues: potential application using human neural stem cells. Nanoscale Res Lett 10:972

    Article  PubMed  CAS  Google Scholar 

  248. Wang X et al (2014) A novel artificial nerve graft for repairing long-distance sciatic nerve defects: a self-assembling peptide nanofiber scaffold-containing poly(lactic-co-glycolic acid) conduit. Neural Regen Res 9:2132–2141

    Article  PubMed  PubMed Central  Google Scholar 

  249. Wu X et al (2017) Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen. Biomater 4:21–30

    Article  CAS  PubMed  Google Scholar 

  250. Haastert-Talini K, Grothe C (2013) Electrical stimulation for promoting peripheral nerve regeneration. Int Rev Neurobiol 109:111–124

    Article  PubMed  Google Scholar 

  251. Zhang Z et al (2007) Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs 31:13–22

    Article  CAS  PubMed  Google Scholar 

  252. Gupta A et al (2015) Biocompatibility of single-walled carbon nanotube composites for bone regeneration. Bone Joint Res 4:70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Song J et al (2016) Polymerizing pyrrole coated poly (l-lactic acid-co-ε-caprolactone) (PLCL) conductive Nanofibrous conduit combined with electric stimulation for long-range peripheral nerve regeneration. Front Mol Neurosci 9:117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  254. Schmidt CE et al (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A 94:8948–8953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Lovat V et al (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5:1107–1110

    Article  CAS  PubMed  Google Scholar 

  256. Sang L et al (2016) Thermally sensitive conductive hydrogel using amphiphilic crosslinker self-assembled carbon nanotube to enhance neurite outgrowth and promote spinal cord regeneration. RSC Adv 6:26341–26351

    Article  CAS  Google Scholar 

  257. Annabi N et al (2016) Highly elastic and conductive human-based protein hybrid hydrogels. Adv Mater 28:40–49

    Article  CAS  PubMed  Google Scholar 

  258. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3:249–253

    Article  CAS  PubMed  Google Scholar 

  259. Andersen MØ et al (2013) Spatially controlled delivery of siRNAs to stem cells in implants generated by multi-component additive manufacturing. Adv Funct Mater 23:5599–5607

    Article  CAS  Google Scholar 

  260. Toh AGG et al (2014) Engineering microfluidic concentration gradient generators for biological applications. Microfluid Nanofluidics 16:1–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose L. Gerardo Nava or Gary A. Brook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gerardo Nava, J.L., Rose, J.C., Altinova, H., Dalton, P.D., De Laporte, L., Brook, G.A. (2021). Nanofibers and Nanostructured Scaffolds for Nervous System Lesions. In: Morales, J.O., Gaillard, P.J. (eds) Nanomedicines for Brain Drug Delivery. Neuromethods, vol 157. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0838-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0838-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0837-1

  • Online ISBN: 978-1-0716-0838-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics