Skip to main content

CRISPR Guide RNA Design Guidelines for Efficient Genome Editing

  • Protocol
  • First Online:
RNA Tagging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2166))

Abstract

The simple applicability and facile target programming of the CRISPR/Cas9-system abolish the major boundaries of previous genome editing tools, making it the tool of choice for generating site-specific genome alterations. Its versatility and efficacy have been demonstrated in various organisms; however, accurately predicting guide RNA efficiencies remains an organism-independent challenge. Thus, designing optimal guide RNAs is essential to maximize the experimental outcome. Here, we summarize the current knowledge for guide RNA design and highlight discrepancies between different experimental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Urnov FD (2018) Genome editing B.C. (Before CRISPR): lasting lessons from the “old testament”. CRISPR J 1(1):34–46. https://doi.org/10.1089/crispr.2018.29007.fyu

    Article  PubMed  Google Scholar 

  2. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Doudna JA, Charpentier E (2014) Genome editing the new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096

    Article  CAS  PubMed  Google Scholar 

  4. Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361(6405):866–869. https://doi.org/10.1126/science.aat5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592(12):1954–1967. https://doi.org/10.1002/1873-3468.13073

    Article  CAS  PubMed  Google Scholar 

  6. Kumlehn J, Pietralla J, Hensel G et al (2018) The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology. J Integr Plant Biol 60(12):1127–1153. https://doi.org/10.1111/jipb.12734

    Article  CAS  PubMed  Google Scholar 

  7. Cebrian-Serrano A, Davies B (2017) CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 28(7–8):247–261. https://doi.org/10.1007/s00335-017-9697-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. https://doi.org/10.1038/nbt.2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu Y, Sander JD, Reyon D et al (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284. https://doi.org/10.1038/nbt.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin Y, Cradick TJ, Brown MT et al (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42(11):7473–7485. https://doi.org/10.1093/nar/gku402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ren X, Yang Z, Xu J et al (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang J-P, Li X-L, Neises A et al (2016) Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci Rep 6:28566. https://doi.org/10.1038/srep28566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sugano SS, Nishihama R, Shirakawa M et al (2018) Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One 13(10):e0205117

    Article  PubMed  PubMed Central  Google Scholar 

  15. Peterson BA, Haak DC, Nishimura MT et al (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One 11(9):e0162169. https://doi.org/10.1371/journal.pone.0162169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng C, Su H, Bai H et al (2018) High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16(11):1848–1857. https://doi.org/10.1111/pbi.12920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee K, Zhang Y, Kleinstiver BP et al (2019) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17(2):362–372. https://doi.org/10.1111/pbi.12982

    Article  CAS  PubMed  Google Scholar 

  18. Tang X, Liu G, Zhou J et al (2018) A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol 19(1):84. https://doi.org/10.1186/s13059-018-1458-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Q, Xing H-L, Wang Z-P et al (2018) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96(4-5):445–456. https://doi.org/10.1007/s11103-018-0709-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267. https://doi.org/10.1038/nbt.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang T, Wei JJ, Sabatini DM et al (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84. https://doi.org/10.1126/science.1246981

    Article  CAS  PubMed  Google Scholar 

  22. Liang G, Zhang H, Lou D et al (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6:21451. https://doi.org/10.1038/srep21451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu X, Homma A, Sayadi J et al (2016) Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep 6:19675. https://doi.org/10.1038/srep19675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma X, Zhang Q, Zhu Q et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284. https://doi.org/10.1016/j.molp.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Xiao T, Chen C-H et al (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25(8):1147–1157. https://doi.org/10.1101/gr.191452.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Le C, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  Google Scholar 

  27. Zheng T, Hou Y, Zhang P et al (2017) Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci Rep 7:40638. https://doi.org/10.1038/srep40638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949. https://doi.org/10.1016/j.cell.2014.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536):583–588. https://doi.org/10.1038/nature14136

    Article  CAS  PubMed  Google Scholar 

  30. Sander JD, Dahlborg EJ, Goodwin MJ et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8(1):67–69. https://doi.org/10.1038/nmeth.1542

    Article  CAS  PubMed  Google Scholar 

  31. Sanjana NE, Le C, Zhou Y et al (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7(1):171–192. https://doi.org/10.1038/nprot.2011.431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verkuijl SA, Rots MG (2019) The influence of eukaryotic chromatin state on CRISPR-Cas9 editing efficiencies. Curr Opin Biotechnol 55:68–73. https://doi.org/10.1016/j.copbio.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  33. Horlbeck MA, Witkowsky LB, Guglielmi B et al (2016) Nucleosomes impede Cas9 access to DNA in vivo and in vitro. elife 5:e12677. https://doi.org/10.7554/eLife.12677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670–676. https://doi.org/10.1038/nbt.2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Daer RM, Cutts JP, Brafman DA et al (2017) The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synth Biol 6(3):428–438. https://doi.org/10.1021/acssynbio.5b00299

    Article  CAS  PubMed  Google Scholar 

  36. Uusi-Mäkelä MIE, Barker HR, Bäuerlein CA et al (2018) Chromatin accessibility is associated with CRISPR-Cas9 efficiency in the zebrafish (Danio rerio). PLoS One 13(4):e0196238. https://doi.org/10.1371/journal.pone.0196238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen KT, Fløe L, Petersen TS et al (2017) Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett 591(13):1892–1901. https://doi.org/10.1002/1873-3468.12707

    Article  CAS  PubMed  Google Scholar 

  38. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415. https://doi.org/10.1093/nar/gkg595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431. https://doi.org/10.1093/nar/gkg599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu H, Ding Y, Zhou Y et al (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532. https://doi.org/10.1016/j.molp.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  41. Stemmer M, Thumberger T, Del Sol KM et al (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10(4):e0124633. https://doi.org/10.1371/journal.pone.0124633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bae S, Park J, Kim J-S (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475. https://doi.org/10.1093/bioinformatics/btu048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park J, Bae S, Kim J-S (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31(24):4014–4016. https://doi.org/10.1093/bioinformatics/btv537

    Article  CAS  PubMed  Google Scholar 

  44. Lee CM, Davis TH, Bao G (2018) Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity. Exp Physiol 103(4):456–460. https://doi.org/10.1113/EP086043

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Puchta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schindele, P., Wolter, F., Puchta, H. (2020). CRISPR Guide RNA Design Guidelines for Efficient Genome Editing. In: Heinlein, M. (eds) RNA Tagging. Methods in Molecular Biology, vol 2166. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0712-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0712-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0711-4

  • Online ISBN: 978-1-0716-0712-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics