Skip to main content

Isolation, Purity Assessment, and Proteomic Analysis of Endoplasmic Reticulum

  • Protocol
  • First Online:
Plant Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2139))

Abstract

Subcellular proteomics include, in its experimental workflow, steps aimed at purifying organelles. The purity of the subcellular fraction should be assessed before mass spectrometry analysis, in order to confidently conclude the presence of associated specific proteoforms, deepening the knowledge of its biological function. In this chapter, a protocol for isolating endoplasmic reticulum (ER) and purity assessment is reported, and it precedes the proteomic analysis through a gel-free/label-free proteomic approach. Dysfunction of quality-control mechanisms of protein metabolism in ER leads to ER stress. Additionally, ER, which is a calcium-storage organelle, is responsible for signaling and homeostatic function, and calcium homeostasis is required for plant tolerance. With such predominant cell functions, effective protocols to fractionate highly purified ER are needed. Here, isolation methods and purity assessments of ER are described. In addition, a gel-free/label-free proteomic approach of ER is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Healy SJ, Verfaillie T, Jag̈er R et al (2012) Biology of the endoplasmic reticulum. In: Agostinis P, Samali A (eds) Endoplasmic reticulum stress in health and disease. Springer, Dordrecht, pp 3–22

    Chapter  Google Scholar 

  2. Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349

    Article  CAS  Google Scholar 

  3. Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 64:477–499

    Article  CAS  Google Scholar 

  4. Papp S, Dziak E, Michalak M, Opas M (2003) Is all of the endoplasmic reticulum created equal? The effects of the heterogeneous distribution of endoplasmic reticulum Ca2+-handling proteins. J Cell Biol 160:475–479

    Article  CAS  Google Scholar 

  5. Liu L, Cui F, Li Q et al (2011) The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res 21:957–969

    Article  CAS  Google Scholar 

  6. Wang X, Komatsu S (2016) Gel-free/label-free proteomic analysis of endoplasmic reticulum proteins in soybean root tips under flooding and drought stresses. J Proteome Res 15:2211–2227

    Article  CAS  Google Scholar 

  7. Chen X, Karnovsky A, Sans MD et al (2010) Molecular characterization of the endoplasmic reticulum: insights from proteomic studies. Proteomics 10:4040–4052

    Article  CAS  Google Scholar 

  8. Maltman DJ, Gadd SM, Simon WJ et al (2007) Differential proteomic analysis of the endoplasmic reticulum from developing and germinating seeds of castor (Ricinus communis) identifies seed protein precursors as significant components of the endoplasmic reticulum. Proteomics 7:1513–1528

    Article  CAS  Google Scholar 

  9. Qian D, Tian L, Qu L (2015) Proteomic analysis of endoplasmic reticulum stress responses in rice seeds. Sci Rep 5:14255

    Article  CAS  Google Scholar 

  10. Barba-Espín G, Dedvisitsakul P, Hägglund P et al (2014) Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress. Plant Physiol 164:951–965

    Article  Google Scholar 

  11. Komatsu S, Kuji R, Nanjo Y et al (2012) Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. J Proteome 77:531–560

    Article  CAS  Google Scholar 

  12. Graham JM (2002) Fractionation of Golgi, endoplasmic reticulum, and plasma membrane from cultured cells in a preformed continuous iodixanol gradient. Sci World J 2:1435–1439

    Article  CAS  Google Scholar 

  13. Williamson CD, Wong DS, Bozidis P et al (2015) Isolation of endoplasmic reticulum, mitochondria, and mitochondria-associated membrane and detergent resistant membrane fractions from transfected cells and from human cytomegalovirus-infected primary fibroblasts. Curr Protoc Cell Biol 68:3.27.1–3.27.33

    Article  Google Scholar 

  14. Shore GC, Tata JR (1977) Two fractions of rough endoplasmic reticulum from rat liver. I. Recovery of rapidly sedimenting endoplasmic reticulum in association with mitochondria. J Cell Biol 2:714–725

    Article  Google Scholar 

  15. Coughlan SJ, Hastings C, Winfrey RJ Jr (1996) Molecular characterisation of plant endoplasmic reticulum. Identification of protein disulfide-isomerase as the major reticuloplasmin. Eur J Biochem 235:215–224

    Article  CAS  Google Scholar 

  16. Maltman DJ, Simon WJ, Wheeler CH et al (2002) Proteomic analysis of the endoplasmic reticulum from developing and germinating seed of castor (Ricinus communis). Electrophoresis 23:626–639

    Article  CAS  Google Scholar 

  17. Chanat E, Le Parc A, Lahouassa H et al (2016) Isolation of endoplasmic reticulum fractions from mammary epithelial tissue. J Mammary Gland Biol Neoplasia 21:1–8

    Article  Google Scholar 

  18. Wang X, Li S, Wang H et al (2017) Quantitative proteomics reveal proteins enriched in tubular endoplasmic reticulum of Saccharomyces cerevisiae. elife 6:e23816

    Article  Google Scholar 

  19. Komatsu S, Hashiguchi A (2018) Subcellular proteomics: application to elucidation of flooding-response mechanisms in soybean. Proteomes 6:E13

    Article  Google Scholar 

  20. Wang X, Komatsu S (2016) Plant subcellular proteomics: application for exploring optimal cell function in soybean. J Proteome 143:45–56

    Article  CAS  Google Scholar 

  21. Komatsu S, Yamamoto A, Nakamura T et al (2011) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Proteome Res 10:3993–4004

    Article  CAS  Google Scholar 

  22. Nouri MZ, Komatsu S (2010) Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics 10:1930–1945

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  24. Komatsu S, Nanjo Y, Nishimura M (2013) Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteome 79:231–250

    Article  CAS  Google Scholar 

  25. Honjoh K, Mimura A, Kuroiwa E et al (2003) Purification and characterization of two isoforms of glucose 6-phosphate dehydrogenase (G6PDH) from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 67:1888–1896

    Article  CAS  Google Scholar 

  26. Huang S, Jacoby RP, Millar AH et al (2014) Plant mitochondrial proteomics. In: Jorrin Novo JV, Komatsu S, Weckwerth W, Wienkoop S (eds) Plant proteomics: methods and protocol. Springer, New York, pp 499–526

    Chapter  Google Scholar 

  27. Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Botany 65:729–735

    CAS  Google Scholar 

  28. Hasinoff BB (1990) Inhibition and inactivation of NADH-cytochrome c reductase activity of bovine heart submitochondrial particles by the iron(III)-adriamycin complex. Biochem J 265:865–870

    Article  CAS  Google Scholar 

  29. Gomez L, Chrispeels MJ (1994) Complementation of an Arabidopsis thaliana mutant that lacks complex asparagine-linked glycans with the human cDNA encoding N-acetylglucosaminyltransferase I. Proc Natl Acad Sci U S A 91:1829–1833

    Article  CAS  Google Scholar 

  30. Olsen JV, de Godoy LM, Li G et al (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021

    Article  CAS  Google Scholar 

  31. Zhang Y, Wen Z, Washburn MP et al (2009) Effect of dynamic exclusion duration on spectral count based quantitative proteomics. Anal Chem 81:6317–6326

    Article  CAS  Google Scholar 

  32. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  Google Scholar 

  33. Brosch M, Yu L, Hubbard T et al (2008) Accurate and sensitive peptide identification with Mascot Percolator. J Proteome Res 8:3176–3181

    Article  Google Scholar 

  34. Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272

    Article  CAS  Google Scholar 

  35. Usadel B, Poree F, Nagel A et al (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, maize. Plant Cell Environ 32:1211–1229

    Article  Google Scholar 

  36. Tanz SK, Castleden I, Hooper CM et al (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:D1185–D1191

    Article  CAS  Google Scholar 

  37. Blum T, Briesemeister S, Kohlbacher O (2009) MultiLoc2: integrating phylogeny and gene ontology terms improves subcellular protein localization prediction. BMC Bioinformatics 10:274

    Article  Google Scholar 

  38. Horton P, Park KJ, Obayashi T et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 15H04445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuko Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, X., Komatsu, S. (2020). Isolation, Purity Assessment, and Proteomic Analysis of Endoplasmic Reticulum. In: Jorrin-Novo, J., Valledor, L., Castillejo, M., Rey, MD. (eds) Plant Proteomics. Methods in Molecular Biology, vol 2139. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0528-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0528-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0527-1

  • Online ISBN: 978-1-0716-0528-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics