Skip to main content

Developing Transposable Element Marker System for Molecular Breeding

  • Protocol
  • First Online:
Legume Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2107))

Abstract

Transposable element (TE) marker system was developed considering the useful properties of the transposable elements such as their large number in the animal and plant genomes, high rate of insertion polymorphism, and ease of detection. Various methods have been employed for developing a large number of TE markers in several crop plants for genomics studies. Here we describe some of these methods including the recent whole genome search. We also review the application of TE markers in molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Do Kim K, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446. https://doi.org/10.1038/ng.3517

    Article  CAS  PubMed  Google Scholar 

  2. Consortium IBGS (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711

    Article  CAS  Google Scholar 

  3. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  4. Wessler SR (2006) Transposable elements and the evolution of eukaryotic genomes. Proc Natl Acad Sci 103(47):17600–17601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6(3):127–134

    Article  CAS  PubMed  Google Scholar 

  6. Casa AM, Brouwer C, Nagel A, Wang L, Zhang Q, Kresovich S, Wessler SR (2000) The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci 97(18):10083–10089. https://doi.org/10.1073/pnas.97.18.10083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Izsvak Z, Ivics Z, Shimoda N, Mohn D, Okamoto H, Hackett PB (1999) Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J Mol Evol 48(1):13–21

    Article  CAS  PubMed  Google Scholar 

  8. Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28(3):240–252

    Article  PubMed  Google Scholar 

  9. Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature inverted–repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29(3):1005–1017

    Article  CAS  PubMed  Google Scholar 

  10. Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Marcon HS, Domingues DS, Silva JC, Borges RJ, Matioli FF, de Mattos Fontes MR, Marino CL (2015) Transcriptionally active LTR retrotransposons in Eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biol 15(1):198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Purugganan M, Wessler S (1995) Transposon signatures: species-specific molecular markers that utilize a class of multiple-copy nuclear DNA. Mol Ecol 4(2):265

    Article  CAS  PubMed  Google Scholar 

  13. Waugh R, McLean K, Flavell A, Pearce S, Kumar A, Thomas B, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253(6):687–694

    Article  CAS  PubMed  Google Scholar 

  14. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98(5):704–711

    Article  CAS  Google Scholar 

  15. Antonius-Klemola K, Kalendar R, Schulman AH (2006) TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet 112(6):999–1008

    Article  CAS  PubMed  Google Scholar 

  16. Du D, Du X, Mattia MR, Wang Y, Yu Q, Huang M, Yu Y, Grosser JW, Gmitter FG (2018) LTR retrotransposons from the Citrus x clementina genome: characterization and application. Tree Genet Genomes 14(4):43

    Article  Google Scholar 

  17. Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mob DNA 1(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nasri S, Mandoulakani BA, Darvishzadeh R, Bernousi I (2013) Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochem Genet 51(11–12):927–943

    Article  CAS  PubMed  Google Scholar 

  19. Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet 122(7):1385–1397

    Article  PubMed  Google Scholar 

  20. Cheraghi A, Rahmani F, Hassanzadeh-Ghorttapeh A (2018) IRAP and REMAP based genetic diversity among varieties of Lallemantia iberica. Mol Biol Res Commun 7(3):125–132. https://doi.org/10.22099/mbrc.2018.29924.1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci 97(12):6603–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sorkheh K, Dehkordi MK, Ercisli S, Hegedus A, Halász J (2017) Comparison of traditional and new generation DNA markers declares high genetic diversity and differentiated population structure of wild almond species. Sci Rep 7(1):5966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Flavell AJ, Knox MR, Pearce SR, Ellis TN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16(5):643–650

    Article  CAS  PubMed  Google Scholar 

  24. Konovalov FA, Goncharov NP, Goryunova S, Shaturova A, Proshlyakova T, Kudryavtsev A (2010) Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats. Mol Gen Genomics 283(6):551–563

    Article  CAS  Google Scholar 

  25. Lou Q, Chen J (2007) Ty1-copia retrotransposon-based SSAP marker development and its potential in the genetic study of cucurbits. Genome 50(9):802–810

    Article  CAS  PubMed  Google Scholar 

  26. Melnikova NV, Kudryavtseva AV, Speranskaya AS, Krinitsina AA, Dmitriev AA, Belenikin MS, Upelniek VP, Batrak ER, Kovaleva IS, Kudryavtsev AM (2012) The FaRE1 LTR-retrotransposon based SSAP markers reveal genetic polymorphism of strawberry (Fragaria × ananassa) cultivars. J Agric Sci 4(11):111

    Google Scholar 

  27. Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui Q, Lim K, Kovarik A, Leitch A, Grandbastien MA (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186(1):135–147

    Article  CAS  PubMed  Google Scholar 

  28. Syed N, Sureshsundar S, Wilkinson M, Bhau B, Cavalcanti J, Flavell A (2005) Ty1-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theor Appl Genet 110(7):1195–1202

    Article  CAS  PubMed  Google Scholar 

  29. Hirano R, Naito K, Fukunaga K, Watanabe KN, Ohsawa R, Kawase M (2011) Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome 54(6):498–506

    Article  CAS  PubMed  Google Scholar 

  30. Karki S, Tsukiyama T, Okumoto Y, Rizal G, Naito K, Teraishi M, Nakazaki T, Tanisaka T (2009) Analysis of distribution and proliferation of mPing family transposons in a wild rice (Oryza rufipogon Griff.). Breed Sci 59(3):297–307

    Article  CAS  Google Scholar 

  31. Shan X, Ou X, Liu Z, Dong Y, Lin X, Li X, Liu B (2009) Transpositional activation of mPing in an asymmetric nuclear somatic cell hybrid of rice and Zizania latifolia was accompanied by massive element loss. Theor Appl Genet 119(7):1325

    Article  CAS  PubMed  Google Scholar 

  32. Takagi K, Ishikawa N, Maekawa M, Tsugane K, Iida S (2007) Transposon display for active DNA transposons in rice. Genes Genet Syst 82(2):109–122

    Article  CAS  PubMed  Google Scholar 

  33. Van den Broeck D, Maes T, Sauer M, Zethof J, De Deukeleire P, D’hauw M, Van Montagu M, Gerats T (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J 13(1):121–129

    CAS  PubMed  Google Scholar 

  34. Zhang X, Feschotte C, Zhang Q, Jiang N, Eggleston WB, Wessler SR (2001) P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc Natl Acad Sci 98(22):12572–12577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalendar R, Antonius K, Smýkal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430

    Article  CAS  PubMed  Google Scholar 

  36. Xu JY, Zhu Y, Yi Z, Wu G, Xie GY, Qin MJ (2018) Molecular diversity analysis of Tetradium ruticarpum (WuZhuYu) in China based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Chin J Nat Med 16(1):1–9. https://doi.org/10.1016/S1875-5364(18)30024-4

    Article  PubMed  Google Scholar 

  37. Coutinho JP, Carvalho A, Martin A, Lima-Brito J (2018) Molecular characterization of Fagaceae species using inter-primer binding site (iPBS) markers. Mol Biol Rep 45(2):133–142. https://doi.org/10.1007/s11033-018-4146-3

    Article  CAS  PubMed  Google Scholar 

  38. Monden Y, Fujii N, Yamaguchi K, Ikeo K, Nakazawa Y, Waki T, Hirashima K, Uchimura Y, Tahara M (2014) Efficient screening of long terminal repeat retrotransposons that show high insertion polymorphism via high-throughput sequencing of the primer binding site. Genome 57(5):245–252

    Article  CAS  PubMed  Google Scholar 

  39. Monden Y, Yamaguchi K, Tahara M (2014) Application of iPBS in high-throughput sequencing for the development of retrotransposon-based molecular markers. Curr Plant Biol 1:40–44

    Article  Google Scholar 

  40. Monden Y, Takai T, Tahara M (2014) Characterization of a novel retrotransposon TriRe-1 using nullisomic-tetrasomic lines of hexaploid wheat. Sci Rep Fac Agric 103:21–30

    CAS  Google Scholar 

  41. Yamane F, Hirashima Y, Shindo A, Tahara M, Fujii N, Ikeo K, Yamashita Y (2012) Cultivar identification markers of common beans based on the retrotransposon insertion site sequences obtained by next-generation DNA sequencing. DNA Test 4:67–74

    Google Scholar 

  42. Monden Y, Takai T, Tahara M, Umeno Y, Nakamura R (2014) High-throughput development of DNA markers for wheat cultivar discrimination based on an active retrotransposon TriRe-1 insertion polymorphism. DNA Polymorph 22:60–65

    Google Scholar 

  43. Monden Y, Yamamoto A, Shindo A, Tahara M (2014) Efficient DNA fingerprinting based on the targeted sequencing of active retrotransposon insertion sites using a bench-top high-throughput sequencing platform. DNA Res 21(5):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sanchez-Puerta MV (2017) Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica 145(4–5):417–430. https://doi.org/10.1007/s10709-017-9977-7

    Article  CAS  PubMed  Google Scholar 

  45. Metcalfe CJ, Oliveira SG, Gaiarsa JW, Aitken KS, Carneiro MS, Zatti F, Van Sluys M-A (2015) Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane. J Exp Bot 66(14):4239–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wenke T, Seibt KM, Döbel T, Muders K, Schmidt T (2015) Inter-SINE amplified polymorphism (ISAP) for rapid and robust plant genotyping. In: Plant genotyping. Springer, New York, NY, pp 183–192

    Chapter  Google Scholar 

  47. Mamedov IZ, Arzumanyan ES, Amosova AL, Lebedev YB, Sverdlov ED (2005) Whole-genome experimental identification of insertion/deletion polymorphisms of interspersed repeats by a new general approach. Nucleic Acids Res 33(2):e16–e16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci 97(3):1160–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258(5084):985–987

    Article  CAS  PubMed  Google Scholar 

  50. Grzebelus D, Simon PW (2009) Diversity of DcMaster-like elements of the PIF/Harbinger superfamily in the carrot genome. Genetica 135(3):347–353

    Article  PubMed  Google Scholar 

  51. Grzebelus D, Lasota S, Gambin T, Kucherov G, Gambin A (2007) Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula. BMC Genomics 8(1):409

    Article  PubMed  PubMed Central  Google Scholar 

  52. Grzebelus D, Stawujak K, Mitoraj J, Szklarczyk M (2011) Dynamics of Vulmar/VulMITE group of transposable elements in Chenopodiaceae subfamily Betoideae. Genetica 139(9):1209–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takahashi H, Akagi H, Mori K, Sato K, Takeda K (2006) Genomic distribution of MITEs in barley determined by MITE-AFLP mapping. Genome 49(12):1616–1620

    Article  CAS  PubMed  Google Scholar 

  54. Lyons M, Cardle L, Rostoks N, Waugh R, Flavell AJ (2008) Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Gen Genomics 280(4):275–285

    Article  CAS  Google Scholar 

  55. Hřibová E, Neumann P, Matsumoto T, Roux N, Macas J, Doležel J (2010) Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10(1):204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wanjugi H, Coleman-Derr D, Huo N, Kianian SF, Luo M-C, Wu J, Anderson O, Gu YQ (2009) Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat. Genome 52(6):576–587

    Article  CAS  PubMed  Google Scholar 

  57. Yadav CB, Bonthala VS, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2015) Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res 22(1):79–90

    Article  CAS  PubMed  Google Scholar 

  58. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108(8):1492–1502

    Article  CAS  PubMed  Google Scholar 

  59. Bhat RS, Patil VU, Chandrashekar TM, Sujay V, Gowda MVC, Kuruvinashetti MS (2008) Recovering flanking sequence tags of miniature inverted-repeat transposable element by thermal asymmetric interlaced-PCR in peanut. Curr Sci 95(4):452–453

    CAS  Google Scholar 

  60. Gowda MVC, Bhat RS, Motagi BN, Sujay V, Varshakumari BS (2010) Association of high-frequency origin of late leaf spot resistant mutants with AhMITE1 transposition in peanut. Plant Breed 129(5):567–569

    CAS  Google Scholar 

  61. Gowda MVC, Bhat RS, Sujay V, Kusuma P, Varshakumari BS, Varshney RK (2011) Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.). Plant Syst Evol 291(3–4):153–158

    Article  Google Scholar 

  62. Shirasawa K, Hirakawa H, Tabata S, Hasegawa M, Kiyoshima H, Suzuki S, Sasamoto S, Watanabe A, Fujishiro T, Isobe S (2012) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124(8):1429–1438. https://doi.org/10.1007/s00122-012-1798-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S (2012) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12(1):80. https://doi.org/10.1186/1471-2229-12-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gayathri M, Shirasawa K, Varshney RK, Pandey MK, Bhat RS (2018) Development of new AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.). BMC Res Notes 11(1):10. https://doi.org/10.1186/s13104-017-3121-8

    Google Scholar 

  65. Nunome T, Negoro S, Miyatake K, Yamaguchi H, Fukuoka H (2006) A protocol for the construction of microsatellite enriched genomic library. Plant Mol Biol Rep 24(3–4):305

    Article  CAS  Google Scholar 

  66. Grzebelus D, Jagosz B, Simon PW (2007) The DcMaster transposon display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene 390(1):67–74

    Article  CAS  PubMed  Google Scholar 

  67. Kwon S-J, Park K-C, Kim J-H, Lee JK, Kim N-S (2005) Rim 2/Hipa CACTA transposon display: a new genetic marker technique in Oryza species. BMC Genet 6(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Goerner-Potvin P, Bourque G (2018) Computational tools to unmask transposable elements. Nat Rev Genet 19:688–704

    Article  CAS  PubMed  Google Scholar 

  69. Hake AA, Shirasawa K, Yadawad A, Nadaf HL, Gowda MVC, Bhat RS (2018) Genome-wide structural mutations among the lines resulting from genetic instability in peanut (Arachis hypogaea L.). Plant Gene 13(March):1–7. https://doi.org/10.1016/j.plgene.2017.11.001

    Article  CAS  Google Scholar 

  70. Kang H, Zhu D, Lin R, Opiyo SO, Jiang N, Shiu S-H, Wang G-L (2016) A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads. DNA Res 23(3):241–251. https://doi.org/10.1093/dnares/dsw011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32(2):261–285

    Article  CAS  Google Scholar 

  72. Monden Y, Tahara M (2015) Plant transposable elements and their application to genetic analysis via high-throughput sequencing platform. Hort J 84(4):283–294

    Article  CAS  Google Scholar 

  73. Shirasawa K, Bhat RS, Khedikar YP, Sujay V, Kolekar RM, Yeri SB, Sukruth M, Cholin S, Asha B, Pandey MK, Varshney RK, Gowda MVC (2018) Sequencing analysis of genetic loci for resistance for late leaf spot and rust in peanut (Arachis hypogaea L.). Front Plant Sci:9. https://doi.org/10.3389/fpls.2018.01727. https://www.frontiersin.org/articles/10.3389/fpls.2018.01727/abstract

  74. Takai T, Tahara M (2011) Discovery of the retrotransposon showing genome insertion polymorphisms among wheat cultivars. DNA Polymorph 20:80–90

    Google Scholar 

  75. Monden Y, Yamamoto A, Tahara M (2013) Development of DNA markers for anthocyanin content purple sweet potato using active retrotransposon insertion polymorphisms. DNA Polymorph 21:47–54

    Google Scholar 

  76. Tahara M, Yamashita H, Ooe N (2007) Cultivar identification based on retrotransposon insertion polymorphisms applied for sweet potato products. DNA Polymorph 15:122–125

    CAS  Google Scholar 

  77. Nakagawa A, Yamashita H, Tahara M, Ooyama Y (2009) Retrotransposon DNA marker for Azuki cultivar Shumari identification. DNA Polymorph 17:85–91

    CAS  Google Scholar 

  78. Yamashita H (2008) Retrotransposon DNA marker for Azuki cultivar identification. DNA Polymorph 16:82–87

    CAS  Google Scholar 

  79. Akitake H, Tahara M, Monden Y, Takasaki K, Futo S (2013) Strawberry cultivar identification by retrotransposon insertion polymorphisms. DNA Polymorph 21:64–72

    Google Scholar 

  80. Tanaka Y, Shindo A, Tahara M, Yamashita Y (2011) Species identification marker for common bean (Phaseolus vulgaris) based on a retrotransposon insertion site. DNA Polymorph 19:82–87

    Google Scholar 

  81. Yamashita H, Tahara M (2006) A LINE-type retrotransposon active in meristem stem cells causes heritable transpositions in the sweet potato genome. Plant Mol Biol 61(1–2):79–84

    Article  CAS  PubMed  Google Scholar 

  82. Tahara M, Aoki T, Suzuka S, Yamashita H, Tanaka M, Matsunaga S, Kokumai S (2004) Isolation of an active element from a high-copy-number family of retrotransposons in the sweetpotato genome. Mol Gen Genomics 272(1):116–127

    Article  CAS  Google Scholar 

  83. Maneesha UKC (2017) Analysis of genetic diversity in pigeon pea germplasm using retrotransposon-based molecular markers. J Genet 96(4):551–561

    Article  CAS  PubMed  Google Scholar 

  84. Bonchev G, Dusinsky R, Hauptvogel P, Svec M (2017) Patterns of evolutionary trajectories and domestication history within the genus Hordeum assessed by REMAP markers. J Mol Evol 84(2–3):116–128. https://doi.org/10.1007/s00239-016-9779-z

    Article  CAS  PubMed  Google Scholar 

  85. Galindo-González L, Mhiri C, Grandbastien M-A, Deyholos MK (2016) Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum usitatissimum L.) accessions. BMC Genomics 17(1):1002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Sharma V, Nandineni MR (2014) Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems. Mol Phylogenet Evol 73:10–17

    Article  CAS  PubMed  Google Scholar 

  87. Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis TN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10(1):44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. He P, Ma Y, Zhao G, Dai H, Li H, Chang L, Zhang Z (2010) FaRE1: a transcriptionally active Ty1-copia retrotransposon in strawberry. J Plant Res 123(5):707–714

    Article  CAS  PubMed  Google Scholar 

  89. Monden Y, Takasaki K, Futo S, Niwa K, Kawase M, Akitake H, Tahara M (2014) A rapid and enhanced DNA detection method for crop cultivar discrimination. J Biotechnol 185:57–62

    Article  CAS  PubMed  Google Scholar 

  90. Ray DA (2007) SINEs of progress: mobile element applications to molecular ecology. Mol Ecol 16(1):19–33

    Article  CAS  PubMed  Google Scholar 

  91. Kavar T, Meglič V, Rozman L (2007) Diversity of Slovenian maize (Zea mays) populations by Hbr (MITE) markers and morphological traits. Russ J Genet 43(9):989–995

    Article  CAS  Google Scholar 

  92. Zerjal T, Rousselet A, Mhiri C, Combes V, Madur D, Grandbastien M-A, Charcosset A, Tenaillon MI (2012) Maize genetic diversity and association mapping using transposable element insertion polymorphisms. Theor Appl Genet 124(8):1521–1537

    Article  CAS  PubMed  Google Scholar 

  93. Park K-C, Lee JK, Kim N-H, Shin Y-B, Lee J-H, Kim N-S (2003) Genetic variation in Oryza species detected by MITE-AFLP. Genes Genet Syst 78(3):235–243

    Article  CAS  PubMed  Google Scholar 

  94. Yaakov B, Ceylan E, Domb K, Kashkush K (2012) Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution. Theor Appl Genet 124(7):1365–1373

    Article  CAS  PubMed  Google Scholar 

  95. Monden Y, Tahara M (2017) Genetic linkage analysis using DNA markers in sweetpotato. Breed Sci 67(1):41–51. https://doi.org/10.1270/jsbbs.16142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Monden Y, Hara T, Okada Y, Jahana O, Kobayashi A, Tabuchi H, Onaga S, Tahara M (2015) Construction of a linkage map based on retrotransposon insertion polymorphisms in sweet potato via high-throughput sequencing. Breed Sci 65(2):145–153

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rey-Banos R, Saenz de Miera LE, Garcia P, Perez de la Vega M (2017) Obtaining retrotransposon sequences, analysis of their genomic distribution and use of retrotransposon-derived genetic markers in lentil (Lens culinaris Medik.). PLoS One 12(4):e0176728. https://doi.org/10.1371/journal.pone.0176728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ali SG, Darvishzadeh R, Ebrahimi A, Bihamta MR (2018) Identification of SSR and retrotransposon-based molecular markers linked to morphological characters in oily sunflower (Helianthus annuus L.) under natural and water-limited states. J Genet 97(1):189–203

    Article  PubMed  CAS  Google Scholar 

  99. Nakatsuka T, Yamada E, Saito M, Hikage T, Ushiku Y, Nishihara M (2012) Construction of the first genetic linkage map of Japanese gentian (Gentianaceae). BMC Genomics 13(1):672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tenhola-Roininen T, Kalendar R, Schulman AH, Tanhuanpää P (2011) A doubled haploid rye linkage map with a QTL affecting α-amylase activity. J Appl Genet 52(3):299–304

    Article  CAS  PubMed  Google Scholar 

  101. Shirasawa K, Bertioli DJ, Varshney RK, Moretzsohn MC, Leal-Bertioli SC, Thudi M, Pandey MK, Rami JF, Fonceka D, Gowda MV, Qin H, Guo B, Hong Y, Liang X, Hirakawa H, Tabata S, Isobe S (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20(2):173–184. https://doi.org/10.1093/dnares/dss042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN, Lingaraju S, Patil PV, Nadaf HL, Gowda MVC, Bhat RS (2017) Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS One 12(10):e0186113. https://doi.org/10.1371/journal.pone.0186113. eCollection 2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kolekar RM, Sukruth M, Shirasawa K, Nadaf HL, Motagi BN, Lingaraju S, Patil PV, Bhat RS (2017) Marker-assisted backcrossing to develop foliar disease resistant genotypes in TMV 2 variety of peanut (Arachis hypogaea L.). Plant Breed 136(6):948–953. https://doi.org/10.1111/pbr.12549

    Article  CAS  Google Scholar 

  104. Kwon S, Hong S, Son J, Lee J, Cha Y, Eun M, Kim N (2006) CACTA and MITE transposon distributions on a genetic map of rice using F15 RILs derived from Milyang 23 and Gihobyeo hybrids. Mol Cells 21(3):360

    CAS  PubMed  Google Scholar 

  105. Kwon S, Yu J, Park Y, Son J, Kim N, Lee J (2015) Genetic analysis of seed-shattering genes in rice using an F. Genet Mol Res 14(1):1347–1361

    Article  CAS  PubMed  Google Scholar 

  106. Monden Y, Naito K, Okumoto Y, Saito H, Oki N, Tsukiyama T, Ideta O, Nakazaki T, Wessler SR, Tanisaka T (2009) High potential of a transposon mPing as a marker system in japonica × japonica cross in rice. DNA Res 16(2):131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schwarz-Sommer Z, Gübitz T, Weiss J, Gómez-di-Marco P, Delgado-Benarroch L, Hudson A, Egea-Cortines M (2010) A molecular recombination map of Antirrhinum majus. BMC Plant Biol 10(1):275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang RY, O’Donoughue LS, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102(5):773–781

    Article  CAS  Google Scholar 

  109. Roy NS, Park K-C, Lee S-I, Im M-J, Ramekar RV, Kim N-S (2018) Development of CACTA transposon derived SCAR markers and their use in population structure analysis in Zea mays. Genetica 146(1):1–12

    Article  CAS  PubMed  Google Scholar 

  110. Smýkal P, Hýbl M, Corander J, Jarkovský J, Flavell AJ, Griga M (2008) Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theor Appl Genet 117(3):413–424

    Article  PubMed  CAS  Google Scholar 

  111. Im S, Kwon S, Ryu J, Jeong S, Kim J, Ahn J, Kim S, Jo Y, Choi H, Kang S (2016) Development of a transposon-based marker system for mutation breeding in sorghum (Sorghum bicolor L.). Genet Mol Res 15(3):PMID:27706735

    Article  CAS  Google Scholar 

  112. Roncal J, Guyot R, Hamon P, Crouzillat D, Rigoreau M, Konan ONG, Rakotomalala J-J, Nowak MD, Davis AP, de Kochko A (2016) Active transposable elements recover species boundaries and geographic structure in Madagascan coffee species. Mol Gen Genomics 291(1):155–168

    Article  CAS  Google Scholar 

  113. Carrier G, Le Cunff L, Dereeper A, Legrand D, Sabot F, Bouchez O, Audeguin L, Boursiquot J-M, This P (2012) Transposable elements are a major cause of somatic polymorphism in Vitis vinifera L. PLoS One 7(3):e32973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109(3):588–595

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhat, R.S., Shirasawa, K., Monden, Y., Yamashita, H., Tahara, M. (2020). Developing Transposable Element Marker System for Molecular Breeding. In: Jain, M., Garg, R. (eds) Legume Genomics. Methods in Molecular Biology, vol 2107. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0235-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0235-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0234-8

  • Online ISBN: 978-1-0716-0235-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics