Skip to main content

In Vitro-Transcribed (IVT)-mRNA CAR Therapy Development

  • Protocol
  • First Online:
Chimeric Antigen Receptor T Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2086))

Abstract

Chimeric antigen receptor (CAR) cancer immunotherapy uses autologous immune system’s cells, genetically modified, to reinforce the immune system against cancer cells. Genetic modification is usually mediated via viral transfection, despite the risk of insertional oncogenesis and off target side effects. In vitro-transcribed (IVT)-mRNA-mediated transfection could contribute to a much safer CAR therapy, since IVT-mRNA leaves no ultimate genetic residue in recipient cells. In this chapter, the IVT-mRNA generation procedure is described, from the selection of the target of the CAR T-cells, the cloning of the template for the in vitro transcription and the development of several chemical modifications for optimizing the structure and thus the stability of the produced CAR IVT-mRNA molecules. Among various transfection methods to efficiently express the CAR molecule on T-cells’ surface, the electroporation and the cationic-lipid mediated transfection of the CAR IVT-mRNAs are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 03 January 2020

    This chapter was inadvertently published with one of the contributing author’s name printed as Miliotou N. Androulla, whereas it should have been A. N. Miliotou . This correction has been updated in the book.

References

  1. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360. https://doi.org/10.1146/annurev.immunol.22.012703.104803

    Article  CAS  PubMed  Google Scholar 

  2. Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE (2010) Building better chimeric antigen receptors for adoptive T cell therapy. Curr Gene Ther 10(2):77–90

    Article  CAS  PubMed  Google Scholar 

  3. Miliotou AN, Papadopoulou LC (2018) CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol 19(1):5–18. https://doi.org/10.2174/1389201019666180418095526

    Article  CAS  PubMed  Google Scholar 

  4. Singh N, Frey NV, Grupp SA, Maude SL (2016) CAR T cell therapy in acute lymphoblastic leukemia and potential for chronic lymphocytic leukemia. Curr Treat Options in Oncol 17(6):28. https://doi.org/10.1007/s11864-016-0406-4

    Article  Google Scholar 

  5. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, Raffeld M, Feldman S, Lu L, Li YF, Ngo LT, Goy A, Feldman T, Spaner DE, Wang ML, Chen CC, Kranick SM, Nath A, Nathan DA, Morton KE, Toomey MA, Rosenberg SA (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540–549. https://doi.org/10.1200/JCO.2014.56.2025

    Article  CAS  PubMed  Google Scholar 

  6. Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK (2016) Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin Immunol 28(1):64–72. https://doi.org/10.1016/j.smim.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  7. Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, Lopez JA, Chen J, Chung D, Harju-Baker S, Cherian S, Chen X, Riddell SR, Maloney DG, Turtle CJ (2017) Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130(21):2295–2306. https://doi.org/10.1182/blood-2017-06-793141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fesnak A, Doherty UO (2017) Clinical development and manufacture of chimeric antigen receptor T cells and the role of leukapheresis. European Oncology & Haematology 13(1):28–34

    Article  Google Scholar 

  9. Suerth JD, Schambach A, Baum C (2012) Genetic modification of lymphocytes by retrovirus-based vectors. Curr Opin Immunol 24(5):598–608. https://doi.org/10.1016/j.coi.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  10. Krug C, Wiesinger M, Abken H, Schuler-Thurner B, Schuler G, Dorrie J, Schaft N (2014) A GMP-compliant protocol to expand and transfect cancer patient T cells with mRNA encoding a tumor-specific chimeric antigen receptor. Cancer Immunol, Immunother 63(10):999–1008. https://doi.org/10.1007/s00262-014-1572-5

    Article  CAS  Google Scholar 

  11. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, Chew A, Zhao Y, Levine BL, Albelda SM, Kalos M, June CH (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2(2):112–120. https://doi.org/10.1158/2326-6066.CIR-13-0170

    Article  CAS  PubMed  Google Scholar 

  12. Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M, June CH (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1(1):26–31. https://doi.org/10.1158/2326-6066.CIR-13-0006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Panjwani MK, Smith JB, Schutsky K, Gnanandarajah J, O'Connor CM, Powell DJ Jr, Mason NJ (2016) Feasibility and safety of RNA-transfected CD20-specific chimeric antigen receptor T cells in dogs with spontaneous B cell lymphoma. Mol Ther 24(9):1602–1614. https://doi.org/10.1038/mt.2016.146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tasian SK, Kenderian SS, Shen F, Ruella M, Shestova O, Kozlowski M, Li Y, Schrank-Hacker A, Morrissette JJD, Carroll M, June CH, Grupp SA, Gill S (2017) Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood 129(17):2395–2407. https://doi.org/10.1182/blood-2016-08-736041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schutsky K, Song DG, Lynn R, Smith JB, Poussin M, Figini M, Zhao Y, Powell DJ Jr (2015) Rigorous optimization and validation of potent RNA CAR T cell therapy for the treatment of common epithelial cancers expressing folate receptor. Oncotarget 6(30):28911–28928. https://doi.org/10.18632/oncotarget.5029

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J (2011) mRNA as gene therapeutic: how to control protein expression. J Control Release 150(3):238–247. https://doi.org/10.1016/j.jconrel.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  17. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468

    Article  CAS  PubMed  Google Scholar 

  18. Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE (1992) Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science 255(5047):996–998

    Article  CAS  PubMed  Google Scholar 

  19. Conry RM, LoBuglio AF, Wright M, Sumerel L, Pike MJ, Johanning F, Benjamin R, Lu D, Curiel DT (1995) Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res 55(7):1397–1400

    CAS  PubMed  Google Scholar 

  20. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184(2):465–472

    Article  CAS  PubMed  Google Scholar 

  21. Hoerr I, Obst R, Rammensee HG, Jung G (2000) In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol 30(1):1–7. https://doi.org/10.1002/1521-4141(200001)30:1<1::AID-IMMU1>3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  22. Pascolo S (2015) The messenger's great message for vaccination. Expert Rev Vaccines 14(2):153–156. https://doi.org/10.1586/14760584.2015.1000871

    Article  CAS  PubMed  Google Scholar 

  23. Plews JR, Li J, Jones M, Moore HD, Mason C, Andrews PW, Na J (2010) Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PLoS One 5(12):e14397. https://doi.org/10.1371/journal.pone.0014397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schlaeger TM, Daheron L, Brickler TR, Entwisle S, Chan K, Cianci A, DeVine A, Ettenger A, Fitzgerald K, Godfrey M, Gupta D, McPherson J, Malwadkar P, Gupta M, Bell B, Doi A, Jung N, Li X, Lynes MS, Brookes E, Cherry AB, Demirbas D, Tsankov AM, Zon LI, Rubin LL, Feinberg AP, Meissner A, Cowan CA, Daley GQ (2015) A comparison of non-integrating reprogramming methods. Nat Biotechnol 33(1):58–63. https://doi.org/10.1038/nbt.3070

    Article  CAS  PubMed  Google Scholar 

  25. Sahin U, Kariko K, Tureci O (2014) mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 13(10):759–780. https://doi.org/10.1038/nrd4278

    Article  CAS  PubMed  Google Scholar 

  26. Hartmann J, Schussler-Lenz M, Bondanza A, Buchholz CJ (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 9(9):1183–1197. https://doi.org/10.15252/emmm.201607485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guan S, Rosenecker J (2017) Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther 24(3):133–143. https://doi.org/10.1038/gt.2017.5

    Article  CAS  PubMed  Google Scholar 

  28. Weissman D (2015) mRNA transcript therapy. Expert Rev Vaccines 14(2):265–281. https://doi.org/10.1586/14760584.2015.973859

    Article  CAS  PubMed  Google Scholar 

  29. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630. https://doi.org/10.1016/j.stem.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Angel M, Yanik MF (2010) Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins. PLoS One 5(7):e11756. https://doi.org/10.1371/journal.pone.0011756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T (2015) N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release 217:337–344. https://doi.org/10.1016/j.jconrel.2015.08.051

    Article  CAS  PubMed  Google Scholar 

  32. Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15(20):8125–8148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kauffman KJ, Mir FF, Jhunjhunwala S, Kaczmarek JC, Hurtado JE, Yang JH, Webber MJ, Kowalski PS, Heartlein MW, DeRosa F, Anderson DG (2016) Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 109:78–87. https://doi.org/10.1016/j.biomaterials.2016.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grudzien-Nogalska E, Stepinski J, Jemielity J, Zuberek J, Stolarski R, Rhoads RE, Darzynkiewicz E (2007) Synthesis of anti-reverse cap analogs (ARCAs) and their applications in mRNA translation and stability. Methods Enzymol 431:203–227. https://doi.org/10.1016/S0076-6879(07)31011-2

    Article  CAS  PubMed  Google Scholar 

  35. Kuhn AN, Beibetaert T, Simon P, Vallazza B, Buck J, Davies BP, Tureci O, Sahin U (2012) mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 12(5):347–361

    Article  CAS  PubMed  Google Scholar 

  36. Lorenz C, Fotin-Mleczek M, Roth G, Becker C, Dam TC, Verdurmen WP, Brock R, Probst J, Schlake T (2011) Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol 8(4):627–636. https://doi.org/10.4161/rna.8.4.15394

    Article  CAS  PubMed  Google Scholar 

  37. Steinle H, Behring A, Schlensak C, Wendel HP, Avci-Adali M (2017) Concise review: application of in vitro transcribed messenger RNA for cellular engineering and reprogramming: progress and challenges. Stem Cells 35(1):68–79. https://doi.org/10.1002/stem.2402

    Article  CAS  PubMed  Google Scholar 

  38. Pardi N, Hogan MJ, Porter FW, Weissman D (2018) mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 17(4):261–279. https://doi.org/10.1038/nrd.2017.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Petersen CT, Hassan M, Morris AB, Jeffery J, Lee K, Jagirdar N, Staton AD, Raikar SS, Spencer HT, Sulchek T, Flowers CR, Waller EK (2018) Improving T-cell expansion and function for adoptive T-cell therapy using ex vivo treatment with PI3Kdelta inhibitors and VIP antagonists. Blood Adv 2(3):210–223. https://doi.org/10.1182/bloodadvances.2017011254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li J, Li W, Huang K, Zhang Y, Kupfer G, Zhao Q (2018) Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 11(1):22. https://doi.org/10.1186/s13045-018-0568-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Almasbak H, Walseng E, Kristian A, Myhre MR, Suso EM, Munthe LA, Andersen JT, Wang MY, Kvalheim G, Gaudernack G, Kyte JA (2015) Inclusion of an IgG1-fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther 22(5):391–403. https://doi.org/10.1038/gt.2015.4

    Article  CAS  PubMed  Google Scholar 

  42. Singh N, Liu X, Hulitt J, Jiang S, June CH, Grupp SA, Barrett DM, Zhao Y (2014) Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma. Cancer Immunol Res 2(11):1059–1070. https://doi.org/10.1158/2326-6066.CIR-14-0051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061. https://doi.org/10.1158/0008-5472.CAN-10-2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, Carroll RG, June CH, Grupp SA (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586. https://doi.org/10.1089/hum.2011.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Menon V, Thomas R, Ghale AR, Reinhard C, Pruszak J (2014) Flow cytometry protocols for surface and intracellular antigen analyses of neural cell types. J Vis Exp (94):52241. https://doi.org/10.3791/52241

  46. Kariko K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39(21):e142. https://doi.org/10.1093/nar/gkr695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koblas T, Leontovyc I, Loukotova S, Kosinova L, Saudek F (2016) Reprogramming of pancreatic exocrine cells AR42J into insulin-producing cells using mRNAs for Pdx1, Ngn3, and MafA transcription factors. Mol Ther Nucleic Acids 5:e320. https://doi.org/10.1038/mtna.2016.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lefkothea C. Papadopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miliotou, A.N., Papadopoulou, L.C. (2020). In Vitro-Transcribed (IVT)-mRNA CAR Therapy Development. In: Swiech, K., Malmegrim, K., Picanço-Castro, V. (eds) Chimeric Antigen Receptor T Cells. Methods in Molecular Biology, vol 2086. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0146-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0146-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0145-7

  • Online ISBN: 978-1-0716-0146-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics