Skip to main content

Protocol for Determining the Induction of Human Embryonic Stem Cells into Myogenic Lineage Using Electrospun Nanofibers

  • Protocol
  • First Online:
Stem Cell Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2125))

Abstract

An efficient method for the development of myogenic differentiation using the stem cells can be beneficial in patients with severely compromised mobility, muscular damage, or degenerative diseases. The stem cells can prove to be excellent clinical source of myogenic progenitor cells due to their ability of self-proliferation, renewal, and differentiation into a specific phenotype. They represent an essential component of tissue engineering along with other factors (e.g., 3D scaffolds, ECM mimicking environment, and growth factors). In this chapter, we describe the experimental protocols for isolation of the embryonic stem cells, their proliferation on nanofiber scaffolds, and finally their differentiation into myogenic cells. Furthermore, this chapter elaborates experimental methods to assess the myogenic fate of embryonic stem cells on the nanofiber scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  CAS  Google Scholar 

  2. Ashraf R, Sofi HS, Sheikh FA (2019) Experimental protocol of MSC differentiation into neural lineage for nerve tissue regeneration using polymeric scaffolds. Methods Mol Biol. https://doi.org/10.1007/7651_2019_229

    Google Scholar 

  3. Kulangara K, Leong KW (2009) Substrate topography shapes cell function. Soft Matter 5(21):4072–4076

    Article  CAS  Google Scholar 

  4. Langer R, Vacanti JP, Vacanti CA, Atala A, Freed LE, Vunjak-Novakovic G (1995) Tissue engineering: biomedical applications. Tissue Eng 1(2):151–161

    Article  CAS  Google Scholar 

  5. Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle: basic mechanisms and clinical implications. Curr Pharm Des 16(8):906–914

    Article  CAS  Google Scholar 

  6. Shadrach JL, Wagers AJ (2011) Stem cells for skeletal muscle repair. Philos Trans R Soc Lond B Biol Sci 366(1575):2297–2306

    Article  CAS  Google Scholar 

  7. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159(1):123–134

    Article  CAS  Google Scholar 

  8. Darabi R, Baik J, Clee M, Kyba M, Tupler R, Perlingeiro RC (2009) Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy. Exp Neurol 220(1):212–216

    Article  CAS  Google Scholar 

  9. Shang YC, Wang SH, Xiong F, Zhao CP, Peng FN, Feng SW, Li MS, Li Y, Zhang C (2007) Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells 1. Acta Pharmacol Sin 28(11):1761–1774

    Article  CAS  Google Scholar 

  10. Trounson A (2006) The production and directed differentiation of human embryonic stem cells. Endocr Rev 27(2):208–219

    Article  Google Scholar 

  11. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  12. Darabi R, Gehlbach K, Bachoo RM, Kamath S, Osawa M, Kamm KE, Kyba M, Perlingeiro RC (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14(2):134

    Article  CAS  Google Scholar 

  13. Andrews PW (1984) Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103(2):285–293

    Article  CAS  Google Scholar 

  14. Ashraf R, Sofi HS, Kim H, Sheikh FA (2019) Recent progress in the biological basis of remodeling tissue regeneration using Nanofibers: role of Mesenchymal stem cells and biological molecules. J Bionic Eng 16(2):189–208

    Article  Google Scholar 

  15. Watt FM, Huck WT (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14(8):467

    Article  CAS  Google Scholar 

  16. Ashraf R, Sofi HS, Beigh MA, Majeed S, Arjamand S, Sheikh FA (2018) Prospects of natural polymeric scaffolds in peripheral nerve tissue-regeneration. In: Novel biomaterials for regenerative medicine. Springer, Berlin, pp 501–525

    Chapter  Google Scholar 

  17. Sofi HS, Ashraf R, Beigh MA, Sheikh FA (2018) Scaffolds fabricated from natural polymers/composites by electrospinning for bone tissue regeneration. In: Cutting-edge enabling technologies for regenerative medicine. Springer, Berlin, pp 49–78

    Chapter  Google Scholar 

  18. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462(7272):433

    Article  CAS  Google Scholar 

  19. Sofi HS, Ashraf R, Sheikh FA (2019) Experimental protocol for culture and differentiation of osteoblasts on 3D abode using nanofiber scaffolds. Methods Mol Biol. https://doi.org/10.1007/7651_2019_230

    Google Scholar 

  20. Lim SH, Mao H-Q (2009) Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 61(12):1084–1096

    Article  CAS  Google Scholar 

  21. Sofi HS, Ashraf R, Khan AH, Beigh MA, Majeed S, Sheikh FA (2018) Reconstructing nanofibers from natural polymers using surface functionalization approaches for applications in tissue engineering, drug delivery and biosensing devices. Korean J Couns Psychother 94:1102–1124

    Google Scholar 

  22. Wu J, Meredith JC (2014) Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Lett 3(2):185–190

    Article  CAS  Google Scholar 

  23. Yoshimoto H, Shin Y, Terai H, Vacanti J (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082

    Article  CAS  Google Scholar 

  24. Shao J, Chen C, Wang Y, Chen X, Du C (2012) Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process. React Funct Polym 72(10):765–772

    Article  CAS  Google Scholar 

  25. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  CAS  Google Scholar 

  26. Wani S, Sofi HS, Majeed S, Sheikh FA (2017) Recent trends in chitosan nanofibers: from tissue-engineering to environmental importance: a review. Mater Sci Res India 14(2):89–99

    Article  Google Scholar 

  27. Leung M, Cooper A, Jana S, Tsao C-T, Petrie TA, Zhang M (2013) Nanofiber-based in vitro system for high myogenic differentiation of human embryonic stem cells. Biomacromolecules 14(12):4207–4216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Faheem A Sheikh acknowledges the financial support received from the Nano Mission Council, Department of Science and Technology, under grant number SR/NM/NM-1038/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem A. Sheikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sofi, H.S., Khan, N.A., Sheikh, F.A. (2019). Protocol for Determining the Induction of Human Embryonic Stem Cells into Myogenic Lineage Using Electrospun Nanofibers. In: Turksen, K. (eds) Stem Cell Nanotechnology. Methods in Molecular Biology, vol 2125. Humana, New York, NY. https://doi.org/10.1007/7651_2019_255

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_255

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0359-8

  • Online ISBN: 978-1-0716-0360-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics