Skip to main content

Optical Nanoantennas

  • Living reference work entry
  • First Online:
Handbook of Antenna Technologies

Abstract

An overview of the field of optical plasmonic antennas is presented in this chapter. After a brief introduction and historical review, the theory of surface plasmon polaritons which leads to a set of overall observations as to the requirements and restrictions placed on the operation of plasmonic waveguides and antennas is presented. Both a single metal-dielectric interface and two interfaces between a metal sheet with dielectrics on either side are considered. In the second section the physical principles of operation and mathematical design criteria are presented for several common optical antennas including on-surface metallic structures and free standing particles. The third section covers the basic theory of aperture radiators along with a more detailed description of some popular designs. Current applications of optical nanoantennas are presented along with a discussion on some future directions in optical nanoantenna research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Adato R, Yanik AA, Altug H (2011) On chip plasmonic monopole nano-antennas and circuits. Nano Lett 11:5219–5226

    Article  Google Scholar 

  • Agio M, Alù A (2013) Optical antennas. Cambridge University Press, Cambridge

    Google Scholar 

  • Alù A, Salandrino A, Engheta N (2007) Coupling of optical lumped nanocircuit elements and effects of substrates. Opt Express 15(13):865–876

    Google Scholar 

  • Archambault A, Teperik TV, Marquier F, Greffet JJ (2009) Surface plasmon Fourier optics. Phys Rev B 79:195414

    Article  Google Scholar 

  • Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170:193

    Article  Google Scholar 

  • Balanis CA (2005) Antenna theory analysis and design. Harper and Row, New York

    Google Scholar 

  • Barthes J, Des Francs GC, Bouhelier A, Weeber JC, Dereux A (2011) Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide. Phys Rev B 84(7):073403

    Article  Google Scholar 

  • Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61:10484–10503

    Article  Google Scholar 

  • Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B 63:125417–125432

    Article  Google Scholar 

  • Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182

    Article  MATH  MathSciNet  Google Scholar 

  • Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley-VHC, Weinheim

    Google Scholar 

  • Born M, Wolf E (1970) Principles of optics. Pergamon Press, Oxford

    Google Scholar 

  • Bouwkamp CJ (1950) On Bethe’s theory of diffraction by small holes. Philips Res Rep 5:321–332

    MathSciNet  Google Scholar 

  • Burke JJ, Stegeman GI, Tamir T (1986) Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B 33:5186–5201

    Article  Google Scholar 

  • Collin RE (2004) Hertzian dipole radiating over a lossy earth or sea: some early and late 20th-century controversies. IEEE Antennas Propagat Mag 46:64–79

    Article  Google Scholar 

  • Curto A (2013) Optical antennas control light emission. PhD thesis, ICFO – The Institute of Photonic Sciences

    Google Scholar 

  • Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF (2010) Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329:930–932

    Article  Google Scholar 

  • Dorfmuller J, Dregely D, Esslinger M, Khunsin W, Vogelgesang R, Kern K, Giessen H (2011) Near-field dynamics of optical Yagi-Uda nanoantennas. Nano Lett 11:2819–2824

    Article  Google Scholar 

  • Durach M, Rusina A, Ipatova IP (2004) Surface polaritons in layered semiconductor structures, section nanostructured materials – electronics, optics and devices, the 2nd Joint German-Russian Advanced Student School (JASS), St.-Petersburg

    Google Scholar 

  • Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  Google Scholar 

  • Engheta N, Salandrino A, Alù A (2005) Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett 95:095504

    Article  Google Scholar 

  • Farahani JF (2006) Single emitters coupled to bow-tie nano-antennas. PhD thesis, University of Basel, Germany

    Google Scholar 

  • Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl Phys Lett 82:3095–3097

    Article  Google Scholar 

  • Fischer UC (1986) Submicrometer aperture in a thin metal film as a probe of its microenvironment through enhanced light scattering and fluorescence. J Opt Soc Am B 3:1239–1244

    Article  Google Scholar 

  • Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16:9144–9154

    Article  Google Scholar 

  • Gaebel T, Popa I, Gruber A, Domhan M, Jelezko F, Wrachtrup J (2004) Stable single-photon source in the near infrared. New J Phys 6(1):98

    Article  Google Scholar 

  • Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82:729–787

    Article  Google Scholar 

  • Gay G, Alloschery O, Viaris de Lesegno B, O’Dwyer C, Weiner J, Lezec HJ (2006) The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nat Phys 2:262–267

    Article  Google Scholar 

  • Grosjean T, Mivelle M, Baida FI, Burr GW, Fischer UC (2011) Diabolo nanoantenna for enhancing and confining the magnetic optical field. Nano Lett 11:1009–1013

    Article  Google Scholar 

  • Hofmann HF, Kosako T, Kadoya Y (2007) Design parameters for a nano-optical Yagi-Uda antenna. New J Phys 9:217

    Article  Google Scholar 

  • Homola J (2006) Chapter: electromagnetic theory of surface plasmons, in surface plasmon resonance based sensors. Springer, Berlin

    Book  Google Scholar 

  • Ishihara K, Ohashi K, Ikari T, Minamide H, Yokoyama H, Shikata J, Ito H (2006) Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assistanted bow-tie aperture. Appl Phys Lett 89:201120

    Article  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370–4379

    Article  Google Scholar 

  • Kang J-H, Kim K, Ee H-S, Lee Y-H, Yoon T-Y, Seo M-K, Park H-G (2011) Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. Nat Comm 1592:582

    Article  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  Google Scholar 

  • Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667

    Article  Google Scholar 

  • Kosako T, Kadoya Y, Hofmann HF (2010) Directional control of light by a nano-optical Yagi-Uda antenna. Nat Photonics 4:312–315

    Article  Google Scholar 

  • Lalanne P, Hugonin JP (2006) Interaction between optical nano-objects at metallo-dielectric interfaces. Nat Phys 2:551–556

    Article  Google Scholar 

  • Lezec HJ, Thio T (2004) Diffracted evanescent wave model for enhanced and suppressed optical transmission through sub-wavelength hole arrays. Opt Express 12:3629–3651

    Article  Google Scholar 

  • Lynch DW, Hunter WR (1998) Comments on the optical constants of metals and an introduction to the data for several metals. In: Palik ED (ed) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  • Mahboub O, Carretero Palacios S, Genet C, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Ebbesen TW (2010) Optimization of bull’s eye structures for transmission enhancement. Opt Express 18:124329

    Article  Google Scholar 

  • Maier SA (2006) Plasmonic field enhancement and SERS in the effective mode volume picture. Opt Express 14(5):1957–1964

    Article  Google Scholar 

  • Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  Google Scholar 

  • Michalski KA (2013) On the low order partial fraction fitting of dielectric functions at optical wavelengths. IEEE Trans Antennas Propagat 61:6128–6135

    Article  Google Scholar 

  • Moroz A (2009) Wave scattering. www.wave-scattering.com/drudefit.html. Accessed Oct 2014

  • Muskens OL, Giannini V, Sánchez-Gil JA, Rivas JG (2007) Optical scattering resonances of single and coupled dimer plasmonic nanoantennas. Opt Express 15:17736–17746

    Article  Google Scholar 

  • Nevels RD, Michalski KA (2014) On the behavior of surface plasmons at a Metallo-Dielectric interface. J Lightwave Techno 32:3299–3305

    Article  Google Scholar 

  • Nevels R, Welch GR, Cremer PS, Hemmer P, Phillips T, Scully S, Sokolov AV, Svidzinsky AA, Xia H, Zheltikov A, Scully MO (2012) Configuration and detection of single molecules. Mol Phys 110:1993–2000

    Article  Google Scholar 

  • Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  Google Scholar 

  • Novotny L (2008) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802

    Article  Google Scholar 

  • Otto A (1976) Spectroscopy of surface polaritons by attenuated total reflection, Chapter 13. In: Seraphin BO (ed) Optical properties of solids. North Holland, Amsterdam, pp 679–729

    Google Scholar 

  • Ouyang F, Batson PE, Isaacson M (1992) Quantum size effects in the surface-plasmon excitation of small metallic particles by electron-energy-loss spectroscopy. Phys Rev B 46:15421–15425

    Article  Google Scholar 

  • Park Q-H (2009) Optical antennas and plasmonics. Contemp Phys 50:407–423

    Article  Google Scholar 

  • Pavlov RS, Curto AG, van Hulst NF (2012) Log-periodic optical antennas with broadband directivity. J Opt Comm 285:3334–3340

    Article  Google Scholar 

  • Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Article  Google Scholar 

  • Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  • Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106:874–881

    Article  MathSciNet  Google Scholar 

  • Sarid D (1981) Long-range surface plasmons on very thin metal films. Phys Rev Lett 47:1927–1930

    Article  MATH  Google Scholar 

  • Schuck PJ, Fromm DP, Sundaramurthy A, Kino GS, Moemer WE (2005) Phys Rev Lett 94:17402

    Article  Google Scholar 

  • Søndergaard T, Bozhevolnyi SI (2007) Slow-plasmon resonant nanostructures: scattering and field enhancements. Phys Rev B 75:073402

    Article  Google Scholar 

  • Søndergaard T, Beermann J, Boltasseva A, Bozhevolnyi SI (2008) Slow-plasmon resonant-nanostrip antennas: analysis and demonstration. Phys Rev B 77:115420

    Article  Google Scholar 

  • Song BS, Noda S, Asano T, Akahane Y (2005) Ultra-high-q photonic double heterostructure nanocavity. Nat Mater 4(3):207–210

    Article  Google Scholar 

  • Sotomayor Torres CM, Zankovycha S, Seekampa J, Kama AP, Clavijo CC, Hoffmanna T, Ahopeltob J, Reutherc F, Pfeifferc K, Bleidiesselc G, Gruetznerc G, Maximovd MV, Heidarie B (2003) Nanoimprint lithography: an alternative nanofabrication approach. Mater Sci Eng C 23:23–31

    Article  Google Scholar 

  • Taminiau TH, Moerland RJ, Segerink FB, Kuipers L, van Hulst NF (2007) λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28–33

    Article  Google Scholar 

  • Vahala KJ (2003) Optical microcavities. Nature 424(6950):839–846

    Article  Google Scholar 

  • Wang L, Uppuluri SM, Jin EX, Xu X (2006) Nanolithography using high transmission nanoscale bowtie apertures. Nano Lett 6:361–364

    Article  Google Scholar 

  • Weber MJ (2001) Handbook of lasers. CRC Press, Boca Raton

    Google Scholar 

  • Yang F, Sambles JR, Bradberry GW (1991) Long-range surface modes supported by thin films. Phys Rev B 44:5855–5872

    Article  Google Scholar 

  • Zhao Y, Engheta N, Alù A (2011) Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. J Opt Soc Am B 28:1266–1274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Nevels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Nevels, R.D., Abbas, H.T. (2015). Optical Nanoantennas. In: Chen, Z. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-75-7_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4560-75-7_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Online ISBN: 978-981-4560-75-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics