Skip to main content

III–V on Silicon Integrated Optical Devices

  • Living reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence
  • 46 Accesses

Abstract

Silicon is widely regarded as the most significant material in semiconductor technology. It has been used as the primary material for CMOS transistors because of the excellent oxide-semiconductor interface that could be obtained by oxidizing the substrates. Since the commercialization of silicon-on-insulator (SOI) wafers, silicon has also been considered one of the best materials for photonics. The material itself is transparent to telecom wavelengths, and very compact optical waveguides could be realized from the large refractive index contrast between silicon and oxides. Although silicon has the potential to be used as a material for photonics purpose, it cannot emit light. To add light emitter on silicon, integration of III-V materials, which have direct bandgap structures, on silicon has been widely studied. Integration of III-V materials could solve one of the fundamental problems, i.e., light-emitting problem of silicon. This chapter provides an overview of research and development activities related to III-V/silicon integration. In the first half, the chapter explains current technical details regarding the integration methodologies of III-V/Si integration, and then the chapter reviews recent advancements of various heterogeneous integration technologies by each research institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. W.I. Wang, Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100). Appl. Phys. Lett. 44(12), 1149–1151 (1984)

    Article  ADS  Google Scholar 

  2. B. Shi et al., 1.55-μm Lasers epitaxially grown on silicon. IEEE J. Sel. Top. Quantum Electron. 25(6), 1900711 (2019)

    Article  Google Scholar 

  3. S. Chen et al., Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics 10, 307–312 (2016)

    Article  ADS  Google Scholar 

  4. S. Pan et al., Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate. J. Semicond. 40, 101302 (2019)

    Article  ADS  Google Scholar 

  5. W.-Q. Wei et al., Monolithic integration of embedded III-V lasers on SOI. Light: Sci. Appl. 12(84) (2023). https://doi.org/10.1038/s41377-023-01128-z

  6. H. Kataria et al., Simple epitaxial lateral overgrowth process as a strategy for photonic integration on silicon. IEEE J. Sel. Top. Quantum Electron. 20(4), 8201407 (2014)

    Article  Google Scholar 

  7. S. Mauthe et al., InP-on-Si optically pumped microdisk lasers via monolithic growth and wafer bonding. IEEE J. Sel. Top. Quantum Electron. 25(6), 8300507 (2019)

    Article  Google Scholar 

  8. G. Omanakuttan et al., Surface emitting 1.5 μm multi-quantum well LED on epitaxial lateral overgrowth InP/Si. Optical Mater. Express 10(7), 1714–1723 (2020)

    Article  ADS  Google Scholar 

  9. Z. Yan, Y. Han, L. Lin, et al., A monolithic InP/SOI platform for integrated photonics. Light Sci. Appl. 10, 200 (2021). https://doi.org/10.1038/s41377-021-00636-0

    Article  ADS  Google Scholar 

  10. J. Li et al., Telecom InGaAs/InP quantum well lasers laterally grown on silicon-on-insulator. J. Lightwave Technol. 40(16), 5631–5635 (2022)

    Article  ADS  Google Scholar 

  11. G. Wallis, D.I. Pomerantz, Field assisted glass-metal sealing. JAP 40, 3946–3949 (1969)

    ADS  Google Scholar 

  12. J.B. Lasky, Wafer bonding for silicon-on-insulator technologies. Appl. Phys. Lett. 48, 78–80 (1984)

    Article  ADS  Google Scholar 

  13. E. Yablonovitch et al., Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Appl. Phys. Lett. 56, 2419 (1990)

    Article  ADS  Google Scholar 

  14. Y.H. Lo, R. Bhat, D.M. Hwang, C. Chua, C.-H. Lin, Semiconductor lasers on Si substrates using the technology of bonding by atomic rearrangement. APL 62, 1038–1040 (1993)

    Google Scholar 

  15. K. Mori, K. Tokutome, S. Sugou, Direct bonding of high quality InP on Si and its application to low threshold semiconductor lasers, in Proceedings of IPRM, paper SB1.4 (1995)

    Google Scholar 

  16. R. Stengl, T. Tan, U. Gösele, A model for silicon wafer bonding process. Jpn. J. Appl. Phys. 28, 1735–1741 (1989)

    Article  ADS  Google Scholar 

  17. Q.-Y. Tong, U. Gösele, Semiconductor Wafer Bonding (Wiley, New York) (1998)

    Google Scholar 

  18. D.A. Litton, S.H. Garofalini, Modeling of hydrophilic wafer bonding by molecular dynamics simulations. JAP 89, 6013–6023 (2001)

    ADS  Google Scholar 

  19. Q.-Y. Tong, E. Schmidt, U. Gösele, M. Reiche, Hydrophobic silicon wafer bonding. APL 64, 625–627 (1994)

    Google Scholar 

  20. H. Wada and T. Kamijoh, Direct wafer bonding between different semiconductor materials, in Proceedings of Large Area Wafer Growth and Processing for Electronic and Photonic Devices and the Twentieth State-of-the-art Program on Compound Semiconductors (1995), pp. 175–184

    Google Scholar 

  21. D. Liang, J.E. Bowers, Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J. Vac. Sci. Technol. B 26(4), 1560–1568 (2008)

    Article  Google Scholar 

  22. D. Liang, A.W. Fang, D.C. Oakley, A. Napoleone, D.C. Chapman, C.-L. Chen, P.W. Juodawlkis, O. Raday, J.E. Bowers, 150 mm InP-to-silicon direct wafer bonding for silicon photonic integrated circuits. ECS Trans. 16(8), 235–224 (2008)

    Article  Google Scholar 

  23. X. Luo, Y. Cheng, J. Song, T.-Y. Liow, Q.J. Wang, M. Yu, Wafer-scale dies-transfer bonding technology for hybrid III/V-on-silicon photonic integrated circuit application. IEEE J. Sel. Top. Quantum Electron. 22, 8200612 (2016)

    Article  Google Scholar 

  24. M. Kostrzewa, L. Di Cioccio, M. Zussy, J.C. Roussin, J.M. Fedeli, N. Kernevez, P. Regreny, C. Lagahe-Blanchard, B. Aspar, InP dies transferred onto silicon substrate for optical interconnects application. Sensors Actuators A125, 411–414 (2006)

    Article  ADS  Google Scholar 

  25. J. Van Campenhout, P. Rojo-Romeo, P. Regency, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J.-M. Fedeli, C. Lagahe, R. Baets, Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007)

    Article  ADS  Google Scholar 

  26. P. Anantha, C.S. Tan, Homogeneous chip to wafer bonding of InP-Al2O3-Si using UV/O3 activation. ECS J. Solid State Sci. Technol. 3, 43–47 (2014)

    Article  Google Scholar 

  27. T. Kikuchi, L. Bai, T. Mitarai, H. Yagi, M. Furukawa, T. Amemiya, N. Nishiyama, S. Arai, Enhanced bonding strength of InP/Si chip-on-wafer by plasma-activated bonding using stress-controlled interlayer. Jpn. J. Appl. Phys. 59, SBBD02 (2019)

    Article  Google Scholar 

  28. S. Menezo, H. Duprez, A. Descos, D. Bordel, L. Sanchez, P. Brianceau, L. Fulbert, V. Carron, B. Ben Bakir, Advances on III-V on silicon DBR and DFB lasers for WDM optical interconnects and associated heterogeneous integration 200mm-wafer-scale technology, in IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), paper. H.1 (2014)

    Google Scholar 

  29. M.A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo, J.A. Rogers, Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33–38 (2006)

    Article  ADS  Google Scholar 

  30. E. Yablonovitch, E. Kapon, T.J. Gmitter, C.P. Yun, R. Bhat, Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates. Photon. Technol. Lett. 1, 41–42 (1989)

    Article  ADS  Google Scholar 

  31. I. Pollentier, L. Buydens, P. Van Daele, P. Demeester, Fabrication of a GaAs-AlGaAs GRIN-SCH SQW laser diode on silicon by epitaxial lift-off, photon. Technol. Lett. 3, 115–117 (1991)

    Article  Google Scholar 

  32. X. Feng, M.A. Meitl, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Competing fracture in kinetically controlled transfer printing. Langmuir 23, 12555–12560 (2007)

    Article  Google Scholar 

  33. H.-J. Kim-Lee, A. Carlson, D.S. Grierson, J.A. Rogers, K.T. Turner, Interface mechanics of adhesiveless microtransfer printing processes. J. App. Lett. 115, 143513 (2014)

    ADS  Google Scholar 

  34. B. Corbett, R. Loi, W. Zhou, D. Liu, Z. Ma, Transfer print techniques for heterogeneous integration of photonic components. Prog. Quantum Electron. 52, 1–17 (2017)

    Article  ADS  Google Scholar 

  35. G. Roelkins, J. Zhang, L. Bogaert, E. Soltanian, M. Billet, A. Uzun, B. Pan, Y. Liu, E. Delli, D. Wang, V.B. Oliva, L.T.N. Tran, X. Guo, H. Li, S. Qin, K. Akritidis, Y. Chen, Y. Xue, M. Niels, D. Maes, M. Kiewiet, T. Reep, T. Vanackere, T. Vandekerckhove, I.L. Lufungula, J. de Witte, L. Reis, S. Poelman, Y. Tan, H. Deng, W. Bogaerts, G. Morthier, D. van Thourhout, B. Kuyken, Present and future of micro-transfer printing for heterogeneous photonic integrated circuits. APL Photonics 9, 010901 (2024)

    Article  Google Scholar 

  36. Y. Zhang et al., Scalable 3E silicon photonic electronic integrated circuits and their application. IEEE J. Sel. Top. Quantum Electron. 26(2), 8201510 (2020)

    Article  ADS  Google Scholar 

  37. T. Hiraki et al., Uncooled operation of directly modulated membrane laser with buried sapphire layer on Si substrate. in Proceedings of Optical Fiber Communication Conference (OFC), paper Tu2D.3 (2024)

    Google Scholar 

  38. J. Chun et al., Transfer of GaN LEDs from sapphire to flexible substrates by laser lift-off and contact printing. IEEE Photon. Technol. Lett. 24(23), 2115–2118 (2012)

    Article  ADS  Google Scholar 

  39. D. Minemura et al., Compact magneto-optical isolator by μ-transfer printing of magneto-optical single-crystal film on silicon waveguides. Opt. Express 31(17), 27821–27829 (2023)

    Article  ADS  Google Scholar 

  40. T. Tsuchiawa et al., Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005)

    Article  ADS  Google Scholar 

  41. T. Hiraki et al., Deuterated SiN/SiON waveguides on Si platform and their application to C-band WDM filters. IEEE Photon. J. 9(5), 2500207 (2017)

    Article  Google Scholar 

  42. S. Matsuo et al., Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer. Opt. Express 22(10), 12139–12147 (2014)

    Article  ADS  Google Scholar 

  43. K. Takeda et al., Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat. Photonics 7, 569–575 (2013)

    Article  ADS  Google Scholar 

  44. H. Nishi et al., Monolithic integration of InP wire and SiOx waveguides on Si platform. IEEE Photon. J. 7(5), 4900308 (2015)

    Article  Google Scholar 

  45. H. Nishi et al., Monolithic integration of an 8-channel directly modulated membrane-laser array and a SiN AWG filter on Si. in Proceedings of OFC, paper Th3B.2 (2018)

    Google Scholar 

  46. N.-P. Diamantopoulos et al., 60 GHz bandwidth directly modulated membrane III-V lasers on SiO2/Si. J. Lightwave Technol. 40(10), 3299–3306 (2022)

    Article  ADS  Google Scholar 

  47. T. Aihara et al., Membrane III-V/Si DFB laser using uniform grating and width-modulated Si waveguide. J. Lightwave Technol. 38(11), 2961–2967 (2020)

    Article  ADS  Google Scholar 

  48. T. Fujii et al., Multiwavelength membrane laser array using selectivie area growth on directly bonded InP on SiO2/Si. Optica 7(7), 838–846 (2020)

    Article  ADS  Google Scholar 

  49. T. Hiraki et al., Over-67-GHz-bandwidth membrane InGaAlAs electro-absorption modulator integrated with DFB laser on Si platform. J. Lightwave Technol. 41(3), 880–887 (2023)

    Article  ADS  Google Scholar 

  50. M. Smit et al., Past, present, and future of InP-based photonic integration. APL Photonics 4, 050901 (2019)

    Article  ADS  Google Scholar 

  51. F.M. Soares et al., InP-based foundry PICs for optical interconnects. MDPI Appl. Sci. 9(8), 1588 (2019). https://doi.org/10.3390/app9081588

    Article  Google Scholar 

  52. J.J.G.M. van der Tor et al., Indium phosphide integrated photonics in membranes. IEEE J. Sel. Top. Quantum Electron. 24(1), 6100809 (2018)

    Google Scholar 

  53. Y. Jiao et al., First Demonstration of an Electrically Pumped Laser in the InP Membrane on Silicon Platform. in Proceedings of Advanced Photonics, paper IM4B.3 (2015)

    Google Scholar 

  54. A.A. Kashi et al., Electro-optic slot waveguide phase modulator on the InP membrane on silicon platform. IEEE J. Quantum Electron. 57(1), 0600210 (2021)

    MathSciNet  Google Scholar 

  55. E. Marchena et al., Integrated tunable CMOS laser for Si photonics. in Proceedings of OFC, paper PDP5C.7 (2013)

    Google Scholar 

  56. E. Marchena et al., 448 Gbit/s DP-16QAM transmission using integrated tunable CMOS laser sources. in Proceedings of OFC, paper Th3J.3 (2014)

    Google Scholar 

  57. D. Lambert et al., 3.2Tb/s heterogeneous photonic integrated circuit chip in a co-packaged optics configuration. in Proceedings of OFC, paper W3D.2 (2023)

    Google Scholar 

  58. GlobalFoundries website https://gf.com/technology-platforms/silicon-photonics/

  59. K. Giewont et al., 300-mm monolithic silicon photonics foundry technology. IEEE J. Sel. Top. Quantum Electron. 25(5), 8200611 (2019)

    Article  Google Scholar 

  60. W. D. Sacher et al., An O-band polarization splitter-rotator in a CMOS-integrated silicon photonics platform, in Proceedings of Frontiers in Optics (FiO+LS), Rochester, NY, paper FTu2D.2 (2016)

    Google Scholar 

  61. S. Hu et al., Fully automated in-line optical test system, in Proceedings of 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (Saratoga Springs, NY, 2018), pp. 399–402

    Google Scholar 

  62. Y. Bian et al., 3D integrated laser attach technology on 300-mm monolithic silicon photonics platform, in IEEE Photonics Conference, paper WD4.3 (2020)

    Google Scholar 

  63. Y. Bian et al., 3D integrated laser attach technology on a 300-mm monolithic CMOS silicon photonics platform. IEEE J. Sel. Top. Quantum Electron. 29(3), 8200519 (2023)

    Google Scholar 

  64. J. Brouckaert et al., Thin-film III-V photodetectors integrated on silicon-on-insulator photonic ICs. J. Lightwave Technol. 25(4), 1053–1060 (2007)

    Article  ADS  Google Scholar 

  65. S. Keyvaninia et al., Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies, and multiple dies to a patterned silicon-on-insulator substrate. Opt. Mater. Express 3(1), 35–46 (2012)

    Article  ADS  Google Scholar 

  66. J. van Campenhout et al., A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon. Technol. Lett. 20(16), 1345–1347 (2008)

    Article  ADS  Google Scholar 

  67. J. Zhang et al., III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics 4, 110803 (2019)

    Article  ADS  Google Scholar 

  68. J. Zhang et al., Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser. Opt. Express 26(7), 8821–8830 (2018)

    Article  ADS  Google Scholar 

  69. J. Goyvaerts et al., Enabling VCSEL-on-silicon nitride photonic integrated circuits with micro-transfer-printing. Optica 8(12), 1573–1580 (2021)

    Article  ADS  Google Scholar 

  70. G. Roelkens et al., Micro-transfer printing for heterogeneous Si photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 29(3), 8200414 (2023)

    Google Scholar 

  71. B. Szelag, III-V/Si laser integration: Challenges and results. Presentation file in Leti’s website (2018). Available from https://www.cea.fr/cea-tech/leti/english/Documents/pres-WS-LID-2018/Photonic/03_LETIDAYS_szelag.pdf

  72. B. Szelag et al., Hybrid III-V/silicon technology for laser integration on a 200-mm fully CMOS-compatible silicon photonics platform. IEEE JSTQE 25(5), 8201210 (2019)

    Google Scholar 

  73. J. Durel et al., First demonstration of a back-side integrated heterogeneous hybrid III-V/Si DBR lasers for Si-photonics applications, in IEEE International Electron Devices Meeting (IEDM) (2016) pp. 584–587. https://doi.org/10.1109/IEDM.2016.7838471

  74. A. Shen et al., III-V/SOI as a versatile platform for innovative hybrid lasers: From fast tunable lasers to multimode DFB comb-source lasers, in Opto-Electroncis and Communications Conference (OECC) (2023), https://doi.org/10.1109/OECC56963.2023.10209782

  75. A.W. Fang et al., Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14(20), 9203–9210 (2006)

    Article  ADS  Google Scholar 

  76. A.W. Fang et al., Single-wavelength silicon evanescent lasers. IEEE J. Sel. Top. Quantum Electron. 15(3), 535–544 (2009)

    Article  ADS  Google Scholar 

  77. R. Jones et al., Heterogeneously integrated InP/silicon photonics. IEEE Nanotechnol. Mag., 13(2), 17–26 (2019)

    Google Scholar 

  78. J. B. Driscoll et al., First 400G 8-channel CWDM silicon photonic integrated transmitter, in IEEE Group IV Photonics, paper ThB1 (2018)

    Google Scholar 

  79. R. Jones, Overview and future challenges on III-V integration technologies in silicon photonics platform, in Proceedings of OFC, paper M5A.1 (2021)

    Google Scholar 

  80. J. Sharma et al., Silicon photonic micro-ring modulator-based 4 × 112 Gb/S O-band WDM transmitter with ring photocurrent-based thermal control in 28nm CMOS, in Proceedings of Symposium on VLSI Circuits (2021)

    Google Scholar 

  81. H. Li et al., A 112 Gb/s PAM4 silicon photonics transmitter with microring modulator and CMOS driver. J. Lightwave Technol. 38(1), 131–138 (2020)

    Article  ADS  Google Scholar 

  82. M. Sakib et al., A 240 Gb/s PAM4 silicon micro-ring optical modulator, in Proceedings of OFC, paper M2D.4 (2022)

    Google Scholar 

  83. H. Yu et al., 800 Gbps fully integrated silicon photonics transmitter for data center applications, in Proceedings of OFC, paper M2D.7 (2022)

    Google Scholar 

  84. D. Shin et al., Bulk-Si platform: Born for DRAM, upgraded with on-chip lasers, and transplanted to LiDAR. J. Lightwave Technol. 40(10), 3137–3148 (2022)

    Article  ADS  Google Scholar 

  85. H. Byun et al., FPGA-based DDR3 DRAM interface using bulk-Si optical interconnects, in Proceedings of IEEE Group IV Photonics (2013)

    Google Scholar 

  86. H. Byun et al., Bulk-Si photonics technology for DRAM interface. Photon. Res. 2(3), A25–A33 (2014)

    Article  Google Scholar 

  87. D. Shin et al., O-band DFB laser heterogeneously integrated on bulk-silicon platform. Opt. Exp. 26(22), 14768–14774 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Takeda .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Takeda, K. (2024). III–V on Silicon Integrated Optical Devices. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_65-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_65-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics