Skip to main content

High-Capacity Coherent FSO

  • Living reference work entry
  • First Online:
Handbook of Radio and Optical Networks Convergence

Abstract

A paradigm-changing revolution on the area of high-speed wireless communication systems is currently being forced by the unstoppable increase on bandwidth demand. Due to spectrum exhaustion, traditional radio frequency (RF) communications can hardly cope with the foreseen requirements for next-generation cellular and satellite communications. This is motivating the pursuit of alternative wireless communication technologies, exploiting new spectral bands and transmission paradigms. In this sense, optical wireless communications, also widely known as free-space optics (FSO), are nowadays perceived as the most promising technology to ensure a future-proof solution for the upcoming generations of wireless networks. Among their multiple advantages, FSO systems are particularly appealing for their virtually unlimited bandwidth, potentiating ultrahigh-capacity communications. Following this premise, this chapter starts by reviewing the most relevant application scenarios and enabling technologies that are fueling the development of novel high-capacity FSO systems. Special attention will be dedicated to the role of digital coherent optics in enabling the recent demonstration of record-breaking multi-terabit optical wireless communications. Subsequently, the issue of time-varying power fadings generated by atmospheric turbulence is discussed, including methodologies for its statistical modeling and experimental procedures for controlled turbulence emulation. Motivated by this challenge, the following sections cover the development of tailored channel modeling and estimation techniques, which can be employed for the optimization of advanced modulation schemes, enabling time-adaptive data-rate provisioning in FSO systems. Finally, this chapter is concluded with the discussion of an ultrahigh-capacity FSO field trial, exploiting the use of digital coherent optics and wavelength-division multiplexing (WDM) technology to achieve up to 5 Tbps data-rate transmission over 1.8 km.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ericsson. Mobile data traffic, November 2019, report (2019)

    Google Scholar 

  2. T. Kawanishi, THz and photonic seamless communications. J. Lightwave Technol. 37(7), 1671–1679 (2019)

    Article  ADS  Google Scholar 

  3. V. Petrov, A. Pyattaev, D. Moltchanov, Y. Koucheryavy, Terahertz band communications: Applications, research challenges, and standardization activities, in 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), (2016), pp. 183–190

    Chapter  Google Scholar 

  4. H. Tataria, M. Shafi, A.F. Molisch, M. Dohler, H. Sjöland, F. Tufvesson, 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proc. IEEE 109(7), 1166–1199 (2021)

    Article  Google Scholar 

  5. S. Rommel, T.R. Raddo, I.T. Monroy, Data center connectivity by 6G wireless systems, in 2018 Photonics in Switching and Computing (PSC), (2018), pp. 1–3

    Google Scholar 

  6. I.A. Alimi, A.L. Teixeira, P.P. Monteiro, Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions. IEEE Commun. Surv. Tutor 20(1), 708–769 (2018)

    Article  Google Scholar 

  7. A.O. Mufutau, F.P. Guiomar, M.A. Fernandes, A. Lorences-Riesgo, A. Oliveira, P.P. Monteiro, Demonstration of a hybrid optical fiber–wireless 5G fronthaul coexisting with end-to-end 4G networks. J. Opt. Commun. Networking 12(3), 72–78 (2020)

    Article  Google Scholar 

  8. C.H. de Souza Lopes, E.S. Lima, L.A.M. Pereira, R.M. Borges, A.C. Ferreira, M. Abreu, W.D. Dias, D.H. Spadoti, L.L. Mendes, A.C.S. Junior, Non-standalone 5G NR fiber-wireless system using FSO and fiber-optics Fronthauls. J. Lightwave Technol. 39(2), 406–417 (2021)

    Article  ADS  Google Scholar 

  9. M.A. Esmail, A.M. Ragheb, H.A. Fathallah, M. Altamimi, S.A. Alshebeili, 5G-28 GHz signal transmission over hybrid all-optical FSO/RF link in dusty weather conditions. IEEE Access 7, 24404–24410 (2019)

    Article  Google Scholar 

  10. M. Salsi, Techniques for subsea transmission systems, in 2021 Optical Fiber Communications Conference and Exhibition (OFC), (2021), pp. 1–3

    Google Scholar 

  11. H. Kaushal, G. Kaddoum, Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017)

    Article  Google Scholar 

  12. S. Almonacil, R. Boddeda, T. Allain, D.R. Arrieta, S. Bigo, Digital pre-compensation of Doppler frequency shift in coherent optical satellite communications, in 2020 European Conference on Optical Communications (ECOC), (2020), pp. 1–4

    Google Scholar 

  13. N. Pachler, I. del Portillo, E.F. Crawley, B.G. Cameron, An updated comparison of four low earth orbit satellite constellation systems to provide global broadband, in 2021 IEEE International Conference on Communications Workshops (ICC Workshops), (2021), pp. 1–7

    Google Scholar 

  14. Ethernet Roadmap. http://tinyurl.com/5esu57dh. (2023)

  15. OIF. Implementation agreement 400ZR. http://tinyurl.com/yc7ttjmr. (2020)

  16. Fujitsu Optical Components. http://tinyurl.com/mtphdk7u. (2020)

  17. Cisco. http://tinyurl.com/36kdj7mc. (2021)

  18. Marvell. http://tinyurl.com/aa2b9rjp

  19. II-VI. http://tinyurl.com/mr44ywp7

  20. Nokia. http://tinyurl.com/mndazjwm. (2023)

  21. Lumentum. http://tinyurl.com/4h3k52ve

  22. M.A. Fernandes, P.P. Monteiro, F.P. Guiomar, Single-wavelength terabit FSO Channel for datacenter interconnects enabled by adaptive PCS, in 2021 Optical Fiber Communications Conference and Exhibition (OFC), (2021), pp. 1–3

    Google Scholar 

  23. M.A. Fernandes, P.P. Monteiro, F.P. Guiomar, Free-space terabit optical interconnects. J. Lightwave Technol. 40(5), 1519–1526 (2022)

    Article  ADS  Google Scholar 

  24. B.I. Bitachon, Y. Horst, L. Kulmer, T. Blatter, K. Keller, A.M. Bonnefois, J.-M. Conan, C. Lim, J. Montri, P. Perrault, C. Petit, B. Sorrente, N. Védrenne, D. Matter, L. Pommarel, H. Lindberg, L. Francou, A. Le Kernec, A. Maho, S. Lévêque, M. Sotom, B. Baeuerle, J. Leuthold, Tbit/s Single Channel 53 km free-space optical transmission -assessing the feasibility of optical GEO-satellite feeder links, in 2022 European Conference on Optical Communication (ECOC), (2022), pp. 1–4

    Google Scholar 

  25. F.P. Guiomar, M.A. Fernandes, J.L. Nascimento, V. Rodrigues, P.P. Monteiro, Coherent free-space optical communications: Opportunities and challenges. J. Lightwave Technol. 40(10), 3173–3186 (2022)

    Article  ADS  Google Scholar 

  26. S.M. Walsh, S.F.E. Karpathakis, A.S. McCann, B.P. Dix-Matthews, A.M. Frost, D.R. Gozzard, C.T. Gravestock, S.W. Schediwy, Demonstration of 100 gbps coherent free-space optical communications at LEO tracking rates. Sci. Rep. 12(1) (2022)

    Google Scholar 

  27. M.A. Fernandes, G.M. Fernandes, B.T. Brandao, M.M. Freitas, N. Kaai, B. van Der Wielen, J. Reid, D. Raiteri, P.P. Monteiro, F.P. Guiomar, Unraveling “fiber in the sky”: Terabit capacity enabled by coherent optical wireless, in IEEE Communications Magazine, page early access, (2023)

    Google Scholar 

  28. G. Parca, A. Shahpari, V. Carrozzo, G.M.T. Beleffi, A.L.J. Teixeira, Optical wireless transmission at 1.6 Tbit/s (16×100 Gbit/s) for next-generation convergent urban infrastructures. Opt. Eng. 52(11) (2013)

    Google Scholar 

  29. J. Poliak, R.M. Calvo, F. Rein, Demonstration of 1.72 Tbit/s optical data transmission under worst-case turbulence conditions for ground-to-geostationary satellite communications. IEEE Commun. Lett. 22(9), 1818–1821 (2018)

    Article  Google Scholar 

  30. K. Matsuda, M. Binkai, S. Koshikawa, T. Yoshida, H. Sano, Y. Konishi, N. Suzuki, Field demonstration of real-time 14 Tb/s 220 m FSO transmission with class 1 eye-safe 9-aperture transmitter, in 2021 Optical Fiber Communications Conference and Exhibition (OFC), (2021), pp. 1–3

    Google Scholar 

  31. A. Dochhan, J. Poliak, J. Surof, M. Richerzhagen, Helawae Friew Kelemu, and Ramon Mata Calvo. 13.16 Tbit/s free-space optical transmission over 10.45 km for geostationary satellite feeder-links, in Photonic Networks; 20th ITG-Symposium, (2019), pp. 1–3

    Google Scholar 

  32. M.A. Fernandes, G.M. Fernandes, B.T. Brandão, M.M. Freitas, N. Kaai, A. Tomeeva, B. van der Wielen, J. Reid, D. Raiteri, P.P. Monteiro, F.P. Guiomar, Achieving multi-terabit FSO capacity with coherent WDM transmission over a 1.8 km field trial, in Proceedings of the European Conference on Optical Communication (ECOC), (2023), p. We.D.1.1

    Google Scholar 

  33. Z. Ghassemlooy, W. Popoola, S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with Matlab® (CRC Press, 2019)

    Book  Google Scholar 

  34. J.H. Churnside, S.F. Clifford, Log-normal rician probability-density function of optical scintillations in the turbulent atmosphere. J. Opt. Soc. Am. A 4(10), 1923–1930 (1987)

    Article  ADS  Google Scholar 

  35. A. Al-Habash, L.C. Andrews, R.L. Phillips, Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 40(8), 1554–1562 (2001)

    Article  ADS  Google Scholar 

  36. A.N. Khan, S. Saeed, Y. Naeem, M. Zubair, Y. Massoud, U. Younis, Atmospheric turbulence and fog attenuation effects in controlled environment FSO communication links. IEEE Photon. Technol. Lett. 34(24), 1341–1344 (2022)

    Article  ADS  Google Scholar 

  37. A. Aldaihan, M. Ijaz, S. Ekpo, A. Gibson, Z. Ghassemlooy, K. Rabie, B. Adebisi, Experimental results on the mitigation of turbulence in free space optics using spatial diversity, in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), (2020), pp. 1–5

    Google Scholar 

  38. M. Ijaz, Z. Ghassemlooy, J. Pesek, O. Fiser, H. Le Minh, E. Bentley, Modeling of fog and smoke attenuation in free space optical communications link under controlled laboratory conditions. J. Lightwave Technol. 31(11), 1720–1726 (2013)

    Article  ADS  Google Scholar 

  39. S.A. Moosavi, H. Saghafifar, Irradiance fluctuations of an indoor FSO channel based on hot air chambers. Optik 173, 110–119 (2018)

    Article  Google Scholar 

  40. E. Masciadri, J. Vernin, Optical technique for inner-scale measurement: possible astronomical applications. Appl. Opt. 36(6), 1320–1327 (1997)

    Article  ADS  Google Scholar 

  41. A.K. Majumdar, J.A. DiUbaldo, A. Brown-VanHoozer, Laboratory simulation of atmospheric turbulence for laser propagation: Design and characterization, in Artificial Turbulence for Imaging and Wave Propagation, vol. 3432, (International Society for Optics and Photonics, SPIE, 1998), pp. 50–56

    Chapter  Google Scholar 

  42. F.V. Correia, M. Marco, G. Paulo, F. Fernando, Gil, Experimental evaluation of optical pre-amplification solutions for real-time FSO communications impaired by turbulence, in Optica British and Irish Conference on Optics and Photonics, (2023), pp. 1–3

    Google Scholar 

  43. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  44. F.R. Kschischang, S. Pasupathy, Optimal nonuniform signaling for Gaussian channels. IEEE Trans. Inf. Theory 39(3), 913–929 (1993)

    Article  Google Scholar 

  45. G. Böcherer, F. Steiner, P. Schulte, Bandwidth efficient and rate-matched low-density parity-check coded modulation. IEEE Trans. Commun. 63(12), 4651–4665 (2015)

    Article  Google Scholar 

  46. F.P. Guiomar, A. Lorences-Riesgo, D. Ranzal, F. Rocco, A.N. Sousa, M.A. Fernandes, B.T. Brandao, A. Carena, A.L. Teixeira, M.C.R. Medeiros, P.P. Monteiro, Adaptive probabilistic shaped modulation for high-capacity free-space optical links. J. Lightwave Technol. 38(23), 6529–6541 (2020)

    Article  ADS  Google Scholar 

  47. A. Alvarado, T. Fehenberger, B. Chen, F.M.J. Willems, Achievable information rates for fiber optics: Applications and computations. J. Lightwave Technol. 36(2), 424–439 (2018)

    Article  ADS  Google Scholar 

  48. Aircision Optical Heads. https://www.aircision.com/unique-technology

Download references

Acknowledgment

This work was supported by Fundo Europeu de Desenvolvimento Regional (FEDER) through the CENTRO 2020 Programme by Fundação para a Ciência e Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through Project OptWire under Grant PTDC/EEI-TEL/2697/2021, and also by the Marie Sklodowska-Curie Actions (MSCA) Research and Innovation Staff Exchange (RISE) Programme through Project Deep Intelligent Optical and Radio Communication Networks (DIOR) under Grant 10100828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando P. Guiomar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fernandes, M.A., Fernandes, G.M., Monteiro, P.P., Guiomar, F.P. (2024). High-Capacity Coherent FSO. In: Kawanishi, T. (eds) Handbook of Radio and Optical Networks Convergence. Springer, Singapore. https://doi.org/10.1007/978-981-33-4999-5_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4999-5_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4999-5

  • Online ISBN: 978-981-33-4999-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics